【總結】放縮法證明數(shù)列不等式主要放縮技能:1.2.3.4.5.6.,最大值為,且(1)求;(2)證明::,且,;(1)求證:數(shù)列是等差數(shù)列;(2)解關于數(shù)列的不等式:(3)記,證明:例4.已知數(shù)列滿足:是公差為1的等差數(shù)
2025-03-25 02:44
【總結】精品資源不等式與不等式組復習課一、不等式及一元一次不等式概念判斷下列不等式哪些是一元一次不等式,哪些不是?1、2、3、4、5、二、不等式的性質(用符號語言來表示)1、若①②③④2、若三、解下列一元一次不等式并將解集在數(shù)軸上表示。①
2025-04-16 12:51
【總結】不等式的定義:一般地,用符號“”、“≥”連接的式子叫做不等式不等式的解集可在數(shù)軸上直觀表示。規(guī)律:大于向箭頭,小于向箭尾,有等號(≤、≥)畫實心點,無等號(<、>=畫空心圈。列不等式注意找到問題中不等關系的詞正數(shù)
2024-11-06 21:53
【總結】2020年12月13日星期日18:41:23不等式復習(一)2020年12月13日星期日18:41:24《不等式》知識結構不等式均值不等式不等式證明不等式解法不等式應用不
2024-11-06 21:52
【總結】第一篇:不等式證明經(jīng)典[精選] 金牌師資,笑傲高考 2013年數(shù)學VIP講義 【例1】設a,b∈R,求證:a2+b2≥ab+a+b-1。 【例2】已知0 【例3】設A=a+d,B=b+c,a...
2024-11-08 22:00
【總結】喬瑞霞蛟河三中:1.不等式,一元一次不等式2.不等式的解3.不等式的解集4.解一元一次不等式一.基本概念:?不等式的基本性質(3條):?1)不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向____.?2)不等式兩邊都乘以(或除以)同一個
2025-08-05 01:06
【總結】......不等式專題復習類型一:不等關系及解不等式1.若為實數(shù),則下列命題正確的是()A.若,則B.若,則C.若,則D.若,則2
【總結】第一篇:不等式證明 不等式證明 : 比較法是證明不等式的最基本、最重要的方法之一,它可分為作差法、作商法 (1)作差比較: ①理論依據(jù)a-b0 ab;a-b=0 a=b;a-b a...
2024-10-29 11:38
【總結】第一篇:不等式證明 不等式的證明 比較法證明不等式 a2-b2a-bb0,求證:+b2a+b 2.(本小題滿分10分)選修4—5:不等式選講 (1)已知x、y都是正實數(shù),求證:x3+y...
2024-11-14 12:00
【總結】Mathwang幾個經(jīng)典不等式的關系一幾個經(jīng)典不等式(1)均值不等式設是實數(shù),等號成立.(2)柯西不等式設是實數(shù),則當且僅當或存在實數(shù),使得時,等號成立.(3)排序不等式設,為兩個數(shù)組,是的任一排列,則當且僅當或時,等號成立.(4)切比曉夫不等式對于兩個數(shù)組:,,有當且僅當或時,等號成立.二相關證明(1)用排
2025-04-17 08:24
【總結】第一篇:不等式證明 不等式證明 不等式是數(shù)學的基本內容之一,它是研究許多數(shù)學分支的重要工具,在數(shù)學中有重要的地位,也是高中數(shù)學的重要組成部分,在高考和競賽中都有舉足輕重的地位。不等式的證明變化大,...
2024-11-03 17:55
【總結】實際問題不等關系不等式一元一次不等式一元一次不等式組不等式的性質解不等式解集解集解集數(shù)軸表示數(shù)軸表示數(shù)軸表示解法解法實際應用一,基本概念:1,不等式:2,不等號:3,不等式的解:4,不等式的解集:5,解不等式:6,一元一次不等式:
2024-11-10 02:28
【總結】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質:推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-20 01:36
2025-07-24 19:51
【總結】期末復習(五)不等式與不等式組考點一一元一次不等式的解法【例1】解不等式-≤1,并把它的解集在數(shù)軸上表示出來.【分析】解不等式一般會涉及去括號和去分母,去括號時應注意去括號法則的正確使用,去分母時應注意每一項都要乘最簡公分母.【解答】去分母,得2(2x-1)-3(5x+1)≤6.去括號,得4x-2-15x-3≤6.移項,合并同類項得-11x≤11.系數(shù)
2025-04-29 08:55