freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

構(gòu)造函數(shù)(編輯修改稿)

2024-10-28 19:28 本頁面
 

【文章內(nèi)容簡介】 ,b,c,d206。R+且a+b+c+d=1,求證:4a+1+4b+1+4c+1+4d+1﹤6。解析:構(gòu)造函數(shù):f(x)=(4a+1x1)2+(4b+1x1)2+(4c+1x1)2+(4d+1x1)2=8x22(4a+1+4b+1+4c+1+4d+1)x+4.(Qa+b+c+d=1)由f(x)179。0,得⊿≤0,即⊿=4(4a+1+4b+1+4c+1+4d+1)2128163。0.∴4a+1+4b+1+4c+1+4d+1163。42﹤,b,c,d206。R+且a+b+c=1,求解析:構(gòu)造函數(shù)f(x)=(=(1axa)2+(149++的最小值。abc2bxb)2+(3cxc)21492++)x12x+1,(Qa+b+c=1)abc111由f(x)179。0(當且僅當a=,b=,c=時取等號),632149得⊿≤0,即⊿=1444(++)≤0abc111149∴當a=,b=,c=時,(++)min=36 632abc構(gòu)造函數(shù)證明不等式利用函數(shù)的單調(diào)性+例巳知a、b、c∈R,且a b+mb[分析]本題可以用比較法、分析法等多種方法證明。若采用函數(shù)思想,構(gòu)造出與所證不等式密切相關(guān)的函數(shù),利用函數(shù)的單調(diào)性來比較函數(shù)值而證之,思路則更為清新。a+x+,其中x∈R,0b+xb+x證明:令 f(x)= ∵ba0 ba+ 在R上為減函數(shù) b+xba+從而f(x)= 在R上為增函數(shù)b+x∴y= ∵m0 ∴f(m) f(0)∴a+ma b+mb例求證:a+b1+a+b≤a+b1+a+b(a、b∈R)[分析]本題若直接運用比較法或放縮法,很難尋其線索。若考慮構(gòu)造函數(shù),運用函數(shù)的單調(diào)性證明,問題將迎刃而解。[證明]令 f(x)=x,可證得f(x)在[0,∞)上是增函數(shù)(證略)1+x 而 0得 f(∣a+b∣)≤ f(∣a∣+∣b∣)即: a+b1+a+b≤a+b1+a+b[說明]要證明函數(shù)f(x)是增函數(shù)還是減函數(shù),若用定義來證明,則證明過程是用比較法證明f(x1)與f(x2)的大小關(guān)系;反過來,證明不等式又可以利用函數(shù)的單調(diào)性。利用函數(shù)的值域例若x為任意實數(shù),求證:—x11≤≤ 221+x2[分析]本題可以直接使用分析法或比較法證明,但過程較繁。聯(lián)想到函數(shù)的值域,于是構(gòu)造函數(shù)f(x)= x11,從而只需證明f(x)的值域為[—,]即可。1+x222x2證明:設(shè) y=,則yxx+y=0 21+x ∵x為任意實數(shù) ∴上式中Δ≥0,即(1)4y≥0 1 411得:—≤y≤22x11 ∴—≤≤21+x22 ∴y≤2[說明]應(yīng)用判別式說明不等式,應(yīng)特別注意函數(shù)的定義域。另證:類比萬能公式中的正弦公式構(gòu)造三角函數(shù)更簡單。例求證:必存在常數(shù)a,使得Lg(xy)≤ +lg2y對大于1的任意x與y恒成立。[分析]此例即證a的存在性,可先分離參數(shù),視參數(shù)為變元的函數(shù),然后根據(jù)變元函數(shù)的值域來求解a,從而說明常數(shù)a的存在性。若s≥f(t)恒成立,則s的最小值為f(t)的最大值;若 s≤f(t)恒成立,則s的最大值為f(t)的最小值。22證明:∵lgx+lgy 0(x1,y1)∴原不等式可變形為:Lga≥lgx+lgylgx+lgy222(lgx+lgy)2lgxlgy 令 f(x)= == 1+222222lgx+lgylgx+lgylgx+lgylgx+lgy 而 lgx0,lgy0, ∴l(xiāng)g
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1