【文章內(nèi)容簡(jiǎn)介】
用,應(yīng)當(dāng)熟悉這種題型. 例 6.化簡(jiǎn): )()2c os ()2s i n( ])12([s i n2])12([s i n Znnn nn ??? ??????? ???? ???? 解:原式 =)2c os ()2s i n( ]2)s i n[(2]2)s i n[( ???? ?????? ?? ????? nn nn = ?? ???? c oss in )s in(2)s in( ??? = ?? ?? cossin sin2sin ?? = ?cos3? . 說(shuō)明:本題可視為例 5的姐妹題,相比之下,難度略大于例 5.求解時(shí)應(yīng)注意從所涉及的角中分離出 2? 的整數(shù)倍才能利用 誘導(dǎo)公式一. 例 7.求證: )s i n ()c o s ()2c o s ()4s i n ()t a n ()s i n ( )c o s ()4c o s ()3s i n (???????????? ??????????????????? 證明:左邊 =)c o s ()s in ()s in ()c o s ( c o s]4)s in [ (???????? ??????????? ??? =???? ???cossinsincos cos)sin( ? ?? =??????cossinsincossincos22??? = ? ?? ????? ???? s inc oss inc os c oss in)s in(c os ?? ?? =?? ?? cossin cossin ??, 右邊 =?? ?? sincos cossin ?? ??=?? ?? cossin cossin ??, 所以,原式成立. 例 8.求證 ?????3t a n)360s i n()540s i n( 1)180c os ()c os (1?????????? 證明:左邊=????????s i ns i