freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

小學六年級數(shù)學教案三角形面積計算公式的推導(編輯修改稿)

2024-10-21 09:20 本頁面
 

【文章內(nèi)容簡介】 (四)小組合作二:小組交流:?用字母如何表示? 匯報結(jié)果:生:三角形的面積等于底乘高除以2。生:如果用S表示三角形的面積,用a表示三角形的底,用h表示三角形的高,字母表示三角形的面積公式S = ah 247。 2(設(shè)計意圖:通過比較、歸納,揭示三角形面積計算公式及字母表達式。公式的推導是全體學生親身經(jīng)歷探索的過程、發(fā)現(xiàn)的過程,推理的過程,是學生個人獨立思考與小組合作學習的過程,學生對公式的來源理解深刻,為實際應用及拓展創(chuàng)新鋪下了堅實的基礎(chǔ))。(五)第三次合作:我們運用合作的力量探究出了三角形的面積計算公式,同學們太了不起了!請把三角形的面積的計算公式的推導過程與組內(nèi)伙伴分享板書兩個完全一樣的三角形都可以拼成一個平行四邊形,這個平行四邊形的底等于三角形的底,這個平行四邊形的高等于三角形的高,因為每個三角形的面積等于拼成平行四邊形面積的一半,又因為平行四邊形的面積=底高所以:三角形的面積=底高247。2三、實踐運用,拓展創(chuàng)新:嘗試解答例題。課件出示:一種零件有一面是三角形,高是4厘米。這個三角形的面積是多少平方厘米?(學生獨立嘗試解答,教師巡視輔導,集體訂正。)課內(nèi)作業(yè),課外延伸。鞏固練習練習十七13題四、全課總結(jié):通過與伙伴的合作探究,你有什么收獲?你對自己的表現(xiàn)滿意嗎? 板書設(shè)計:三角形的面積兩個完全一樣的三角形都可以拼成一個平行四邊形 拼成的平行四邊形的底等于三角形的底,拼成的平行四邊形的高等于三角形的高,因為每個三角形的面積等于拼成平行四邊形面積的一半,又因為平行四邊形的面積=底高 所以三角形的面積=底高247。2S = ah 247。2小學數(shù)學概念教學白保華數(shù)學概念是客觀現(xiàn)實中的數(shù)量關(guān)系和空間形式的本質(zhì)屬性在人腦中中的反映。數(shù)學概念比一般概念更要準確掌握。數(shù)學概念是構(gòu)建數(shù)學理論體系的基礎(chǔ),因此必須重 視。小學生年齡小,生活經(jīng)驗不足,知識面窄,構(gòu)成了概念教學中的障礙。數(shù)學概念又是小學數(shù)學基礎(chǔ)知識的一項重要內(nèi)容,是學生理解、掌握數(shù)學知識的首要條 件,也是進行計算和解題的前提。因此重視數(shù)學概念教學,對于提高教學質(zhì)量有著舉足輕重的作用。教師在概念教學中,要創(chuàng)設(shè)條件,根據(jù)不同類型概念運用不同教學策略,、建立表象、逐步抽象、形成概念、強化練習、鞏固概念、靈活運用、什么是數(shù)學概念數(shù)學概念是客觀現(xiàn)實中的數(shù)量關(guān)系和空間形式的本質(zhì)屬性在人腦中中的反映。數(shù)學的研究對象是客觀事物的數(shù)量關(guān)系和空間形式。在數(shù)學中,客觀事物的顏色、材料、氣味等方面的屬性都被看作非本質(zhì)屬性而被舍棄,只保留它們在形狀、大小、位置及數(shù)量關(guān)系等方面的共同屬性。在數(shù)學科學中,數(shù)學概念的含義都要給出精確的規(guī)定,因而數(shù)學概念比一般概念更準確。小學數(shù)學中有很多概念,包括:數(shù)的概念、運算的概念、量與計量的概念、幾何形體的概念、比和比例的概念、方程的概念,以及統(tǒng)計初步知識的有關(guān)概念等。這些概念是構(gòu)成小學數(shù)學基礎(chǔ)知識的重要內(nèi)容,它們是互相聯(lián)系著的。如只有明確牢固地掌握數(shù)的概念,才能理解運算概念,而運算概念的掌握,又能促進數(shù)的整除性概念的形成。二、小學數(shù)學概念的表現(xiàn)形式在小學數(shù)學教材中的概念,根據(jù)小學生的接受能力,表現(xiàn)形式各不相同,其中描述式和定義式是最主要的兩種表示方式。1.定義式定義式是用簡明而完整的語言揭示概念的內(nèi)涵或外延的方法,具體的做法是用原有的概念說明要定義的新概念。這些定義式的概念抓住了一類事物的本質(zhì)特征,揭示的是一類事物的本質(zhì)屬性。這樣的概念,是在對大量的探究材料的分析、綜合、比較、分類中,使之從直觀到表象、繼而上升為理性的認識。如“有兩條邊相等的三角形叫等腰三角形”;“含有未知數(shù)的等式叫方程”等等。這樣定義的概念,條件和結(jié)論十分明顯,便于學生一下子抓住數(shù)學概念的本質(zhì)。2.描述式用一些生動、具體的語言對概念進行描述,叫做描述式。這種方法與定義式不同,描述式概念,一般借助于學生通過感知所建立的表象,選取有代表性的特例做參照物而建立。如:“我們在數(shù)物體的時候,用來表示物體個數(shù)的5??叫自然數(shù)”;“、”等。這樣的概念將隨著兒童知識的增多和認識的深化而日趨完善,在小學數(shù)學教材中一般用于以下兩種情況。一種是對數(shù)學中的點、線、體、集合等原始概念都用描述法加以說明。例如,“直線”這一概念,教材是這樣描述的:拿一條直線,把它拉緊,就成了一條直線。“平面”就用“課桌面”、“黑板面”、“湖面”來說明。另一種是對于一些較難理解的概念,如果用簡練、概括的定義出現(xiàn)不易被小學生理解,就改用描述式。例如,對直圓柱和直圓錐的認識,由于小學生還缺乏運動的觀點,不能像中學生那樣用旋轉(zhuǎn)體來定義,因此只能通過實物形象地描述了它們的特征,并沒有以定義的形式揭示它們的本質(zhì)屬性。學生在觀察、擺拼中,認識到圓柱體的特征是上下兩個底面是相等的圓,側(cè)面展開的形狀是長方形。一般來說,在數(shù)學教材中,小學低年級的概念采用描述式較多,隨著小學生思維能力的逐步發(fā)展,中年級逐步采用定義式,不過有些定義只是初步的,是有待發(fā)展的。在整個小學階段,由于數(shù)學概念的抽象性與學生思維的形象性的矛盾,大部分概念沒有下嚴格的定義;而是從學生所了解的實際事例或已有的知識經(jīng)驗出發(fā),盡可能通過直觀的具體形象,幫助學生認識概念的本質(zhì)屬性。對于不容易理解的概念就暫不給出定義或者采用分階段逐步滲透的辦法來解決。因此,小學數(shù)學概念呈現(xiàn)出兩大特點:一是數(shù)學概念的直觀性;二是數(shù)學概念的階段性。在進行數(shù)學概念教學時,我們必須注意充分領(lǐng)會教材的這兩個特點。三、小學數(shù)學概念教學的意義首先,數(shù)學概念是數(shù)學基礎(chǔ)知識的重要組成部分。小學數(shù)學的基礎(chǔ)知識包括:概念、定律、性質(zhì)、法則、公式等,其中數(shù)學概念不僅是數(shù)學基礎(chǔ)知識的重要組成部分,而且是學習其他數(shù)學知識的基礎(chǔ)。學生掌握基礎(chǔ)知識的過程,實際上就是掌握概念并運用概念進行判斷、推理的過程。數(shù)學中的法則都是建立在一系列概念的基礎(chǔ)上的。事實證明,如果學生有了正確、清晰、完整的數(shù)學概念,就有助于掌握基礎(chǔ)知識,提高運算和解題技能。相反,如果一個學生概念不清,就無法掌握定律、法則和公式。例如,整數(shù)百以內(nèi)的筆算加法法則為:“相同數(shù)位對齊,從個位加起,個位滿十,就向十位進一?!币箤W生理解掌握這個法則,必須事先使他們弄清“數(shù)位”、“個位”、“十位”、“個位滿十”等的意義,如果對這些概念理解不清,就無法學習這一法則。又如,圓的面積公式S=πr2,要以“圓”、“半徑”、“平方”、“圓周率”等概念為基礎(chǔ)。總之小學數(shù)學中的一些概念對于今后的學習而言,都是一些基本的、基礎(chǔ)的知識。小學數(shù)學是一門概念性很強的學科,也就是說,任何一部分內(nèi)容的教學,都離不開概念教學。其次,數(shù)學概念是發(fā)展思維、培養(yǎng)數(shù)學能力的基礎(chǔ)。概念是思維形式之一,也是判斷和推理的起點,所以概念教學對培養(yǎng)學生的思維能力能起重要作用。沒有正確的概念,就不可能有正確的判斷和推理,更談不上邏輯思維能力的培養(yǎng)。例如,“含有未知數(shù)的等式叫做方程”,這是一個判斷。在這個判斷中,學生必須對“未知數(shù)”、“等式”這幾個概念十分清楚,才能形成這個判斷,并以此來推斷出下面的6道題目,哪些是方程。(1)56+23=79(2)23x=67(3)x247。5=(4)442=88(5)75247。x=4(6)9+x=123在概念教學過程中,為了使學生順利地獲取有關(guān)概念,常常要提供豐富的感性材料讓學生觀察,在觀察的基礎(chǔ)上通過教師的啟發(fā)引導,對感性材料進行比較、分析、綜合,最后再抽象概括出概念的本質(zhì)屬性。通過一系列的判斷、推理使概念得到鞏固和運用。從而使學生的初步邏輯思維能力逐步得到提高。 數(shù)學概念教學的一般要求1.使學生準確理解概念理解概念,一要能舉出概念所反映的現(xiàn)實原型,二要明確概念的內(nèi)涵與外延,即明確概念所反映的一類事物的共同本質(zhì)屬性,和概念所反映的全體對象,三要掌握表示概念的詞語或符號。2.使學生牢固掌握概念掌握概念是指要在理解概念的基礎(chǔ)上記住概念,正確區(qū)分概念的肯定例證和否定例證。能對概念進行分類,形成一定的概念系統(tǒng)。3.使學生能正確運用概念概念的運用主要表現(xiàn)在學生能在不同的具體情況下,辨認出概念的本質(zhì)屬性,運用概念的有關(guān)屬性進行判斷推理。四、小學數(shù)學概念教學的過程與方法根據(jù)數(shù)學概念學習的心理過程及特征,數(shù)學概念的教學一般也分為三個階段:①引入概念,使學生感知概念,形成表象;②通過分析、抽象和概括,使學生理解和明確概念;③通過例題、習題使學生鞏固和應用概念。(一)數(shù)學概念的引入數(shù)學概念的引入,是數(shù)學概念教學的第一個環(huán)節(jié),也是十分重要的環(huán)節(jié)。概念引入得當,就可以緊緊地圍繞課題,充分地激發(fā)起學生的興趣和學習動機,為學生順利地掌握概念起到奠基作用。引出新概念的過程,是揭示概念的發(fā)生和形成過程,而各個數(shù)學概念的發(fā)生形成過程又不盡相同,有的是現(xiàn)實模型的直接反映;有的是在已有概念的基礎(chǔ)上經(jīng)過一次或多次抽象后得到的;有的是從數(shù)學理論發(fā)展的需要中產(chǎn)生的;有的是為解決實際問題的需要而產(chǎn)生的;有的是將思維對象理想化,經(jīng)過推理而得;有的則是從理論上的存在性或從數(shù)學對象的結(jié)構(gòu)中構(gòu)造產(chǎn)生的。因此,教學中必須根據(jù)各種概念的產(chǎn)生背景,結(jié)合學生的具體情況,適當?shù)剡x取不同的方式去引入概念。一般來說,數(shù)學概念的引入可以采用如下幾種方法。以感性材料為基礎(chǔ)引入新概念。用學生在日常生活中所接觸到的事物或教材中的實際問題以及模型、圖形、圖表等作為感性材料,引導學生通過觀察、分析、比較、歸納和概括去獲取概念。例如,要學習“平行線”的概念,可以讓學生辨認一些熟悉的實例,像鐵軌、門框的上下兩條邊、黑板的上下邊緣等,然后分化出各例的屬性,從中找出共同的本質(zhì)屬性。鐵軌有屬性:是鐵制的、可以看成是兩條直線、在同一個平面內(nèi)、兩條邊可以無限延長、永不相交等。同樣可分析出門框和黑板上下邊的屬性。通過比較可以發(fā)現(xiàn),它們的共同屬性是:可以抽象地看成兩條直線;兩條直線在同一平面內(nèi);彼此間距離處處相等;兩條直線沒有公共點等,最后抽象出本質(zhì)屬性,得到平行線的定義。以感性材料為基礎(chǔ)引入新概念,是用概念形成的方式去進行教學的,因此教學中應選擇那些能充分顯示被引入概念的特征性質(zhì)的事例,正確引導學生去進行觀察和分析,這樣才能使學生從事例中歸納和概括出共同的本質(zhì)屬性,形成概念。以新、舊概念之間的關(guān)系引入新概念。如果新、舊概念之間存在某種關(guān)系,如相容關(guān)系、不相容關(guān)系等,那么新概念的引入就可以充分地利用這種關(guān)系去進行。例如,學習“乘法意義”時,可以從“加法意義”來引入。又如,學習“整除”概念時,可以從“除法”中的“除盡”來引入。又如,學習“質(zhì)因數(shù)”可以從“因數(shù)”和“質(zhì)數(shù)”這兩個概念引入。再如,在學習質(zhì)數(shù)、合數(shù)概念時,可用約數(shù)概念引入:“請同學們寫出數(shù)1,2,6,7,8,12,11,15的所有約數(shù)。它們各有幾個約數(shù)?你能給出一個分類標準,把這些數(shù)進行分類嗎?你能找出多種分類方法嗎?你找出的所有分類方法中,哪一種分類方法是最新的分類方法?”以“問題”的形式引入新概念。以“問題
點擊復制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1