freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

考研數學二(編輯修改稿)

2024-10-21 03:25 本頁面
 

【文章內容簡介】 函數、三角函數的有理式和簡單無理函數的積分 反常(廣義)積分 定積分的應用考試要求1.理解原函數的概念,理解不定積分和定積分的概念.2.掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法.3.會求有理函數、三角函數有理式和簡單無理函數的積分.4.理解積分上限的函數,會求它的導數,掌握牛頓一萊布尼茨公式.5.了解反常積分的概念,會計算反常積分.6.掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉體的體積及側面積、平行截面面積為已知的立體體積、功、引力、壓力、質心、形心等)及函數的平均值.四、多元函數微積分學考試內容多元函數的概念 二元函數的幾何意義 二元函數的極限與連續(xù)的概念 有界閉區(qū)域上二元連續(xù)函數的性質 多元函數的偏導數和全微分 多元復合函數、隱函數的求導法 二階偏導數 多元函數的極值和條件極值、最大值和最小值 二重積分的概念、基本性質和計算考試要求1.了解多元函數的概念,了解二元函數的幾何意義.2.了解二元函數的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數的性質.3.了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分,了解隱函數存在定理,會求多元隱函數的偏導數.4.了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,并會解決一些簡單的應用問題.5.了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標、極坐標).五、常微分方程考試內容常微分方程的基本概念 變量可分離的微分方程 齊次微分方程 一階線性微分方程 可降階的高階微分方程 線性微分方程解的性質及解的結構定理 二階常系數齊次線性微分方程 高于二階的某些常系數齊次線性微分方程 簡單的二階常系數非齊次線性微分方程 微分方程的簡單應用考試要求1.了解微分方程及其階、解、通解、初始條件和特解等概念.2.掌握變量可分離的微分方程及一階線性微分方程的解法,會解齊次微分方程.3.會用降階法解下列形式的微分方程:y(n)=f(x),y162。162。=f(x,y162。)和 y162。162。=f(y,y162。).4.理解二階線性微分方程解的性質及解的結構定理.5.掌握二階常系數齊次線性微分方程的解法,并會解某些高于二階的常系數齊次線性微分方程.6.會解自由項為多項式、指數函數、正弦函數、余弦函數以及它們的和與積的二階常系數非齊次線性微分方程.7.會用微分方程解決一些簡單的應用問題.線性代數一、行列式考試內容行列式的概念和基本性質 行列式按行(列)展開定理考試要求1.了解行列式的概念,掌握行列式的性質.2.會應用行列式的性質和行列式按行(列)展開定理計算行列式.二、矩陣考試內容矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉置 逆矩陣的概念和性質 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運算考試要求1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣、對稱矩陣、反對稱矩陣和正交矩陣以及它們的性質.2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質.3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件.理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.4.了解矩陣初等變換的概念,了解初等矩陣的性質和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法.5.了解分塊矩陣及其運算.三、向量考試內容向量的概念 向量的線性組合和線性表示 向量組的線性相關與線性無關 向量組的極大線性無關組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關系 向量的內積 線性無關向量組的的正交規(guī)范化方法考試要求1.理解n維向量、向量的線性組合與線性表示的概念.2.理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質及判別法.3.了解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩.4.了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩的關系.5.了解內積的概念,掌握線性無關向量組正交規(guī)范化的施密特(Schmidt)方法.四、線性方程組考試內容線性方程組的克拉默(Cramer)法則 齊次線性方程組有非零解的充分必要條件 非齊次線性方程組有解的充分必要條件 線性方程組解的性質和解的結構 齊次線性方程組的基礎解系和通解 非齊次線性方程組的通解考試要求1.會用克拉默法則.2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件.3.理解齊次線性方程組的基礎解系及通解的概念,掌握齊次線性方程組基礎解系和通解的求法.4.理解非齊次線性方程組的解的結構及通解的概念.5.會用初等行變換求解線性方程組.五、矩陣的特征值及特征向量考試內容矩陣的特征值和特征向量的概念、性質相似矩陣的概念及性質矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特征值、特征向量及其相似對角矩陣考試要求1.理解矩陣的特征值和特征向量的概念及性質,會求矩陣特征值和特征向量.2.理解相似矩陣的概念、性質及矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣.3.理解實對稱矩陣的特征值和特征向量的性質.六、二次型考
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1