freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

概率論與數(shù)理統(tǒng)計教學淺談(編輯修改稿)

2024-10-21 01:52 本頁面
 

【文章內(nèi)容簡介】 有P(A)0,P(B)0時,A、B相瓦獨屯與互不相容是不能同時成立的,直觀上可以這樣解釋:相互獨立意味這B其中一方發(fā)生與否并不影響另一方的發(fā)生,而互不相容意味著A、B只要其中一方發(fā)生了,另一方就一定不發(fā)生,所以這兩個關系不能同時存在。從公式上解釋是:P(A)0,P(B)0且A、B相互獨立,則P(AB)=P(A)P(B)0,而如果A、B互不相容,則P(AB)=P(西)=0。但是只要有一方的概率為0,如,如果A=西,則A與B既相互獨立又互不相容,因為此時P(AB)=P(A)P(B)=0。綜上所述,相互獨立與互不相容并沒有必然的聯(lián)系。而在區(qū)別“不相關”與“相互獨立”的區(qū)別時,可以通過舉例得知J]|f、y不相關不一定就獨立,因為X、l,之間有可能存在其他的函數(shù)關系,但是存在函數(shù)關系的隨機變量是否就不獨立了呢?答案是未必,例子如下:考察隨機變量X、l,和Z:假定x與l,獨立月.都服從參數(shù)為P的(0—1)分布,令z為x與y的函數(shù):可以得到當P=1/2時,Z與X相互獨立。轉(zhuǎn)載于 無憂論文網(wǎng) 通過這些舉例,避免了學生將“獨立”和“互不相容”等同起來,又說明了“獨立”與“函數(shù)關系”之間的聯(lián)系。二、課堂教學中注重數(shù)學思想的教育。培養(yǎng)學生建模能力概率統(tǒng)計中的很多問題都可以歸結為同一類問題,數(shù)學模型就是這類事物共同本質(zhì)的抽象?!皵?shù)學建?!笔侵笇τ诂F(xiàn)實世界的一個特定對象,為了一個特定目的,根據(jù)特有的內(nèi)在規(guī)律,做出一些必要的簡化假設,運用適當?shù)臄?shù)學工具,得到一個數(shù)學結構。數(shù)學模型在概率統(tǒng)計中的應用隨處可見,模型化方法貫穿本課程全過程,因此,在教學過程中應該注意培養(yǎng)學生抽象出問題的本質(zhì)以建立起一般的數(shù)學模型的能力。如“將n只球隨機地放入Ⅳ(N大于等于n)個盒子中去,求每個盒子至多有一只球的概率”與“班級同學生日各不相同”具有相同的數(shù)學模型。另外,還有古典概型、貝努利概型、正態(tài)分布等等這些都是生產(chǎn)生活中抽象出來的,在很多問題中都可以歸結為以上的模型。如以下兩個:例1,設有80臺同類型設備,各臺工作是相互獨立的,發(fā)生故障的概率都是0.01,且一臺設備的故障能由一個人處理??紤]兩種配備維修工人的方法,其一是由4人維護,每人負責20臺;其二是由3人共同維護80臺。試比較這兩種方法在設備發(fā)生故障時不能及時維修的概率的大小。例2,保險公司在一天內(nèi)承保了5000張相同年齡、為期1年的壽險保單,每人一份。在合同有效期內(nèi)若投保人死亡,則公司賠付3萬元。設在一年內(nèi),該年齡段的死亡率為0.0015,且各個投保人是否死亡相互獨立。求該公司對于這批投保人的賠付總額不超過30萬元的概率。以上兩個例子雖然不同,但都可以歸結為伯努利概型,利用二項分布解決。對這類模型,不應簡單地給出它的結果,而應注秀模型的建立、模型的應用范圍以及如何把實際問題轉(zhuǎn)化為有關的數(shù)學模型去解決。三、適度引入多媒體教學及數(shù)據(jù)處理軟件。促進課堂教學手段多樣化在概率統(tǒng)計教學中,實際題目信息及文字很多,“一支粉筆、一塊黑板,以講授為主”的傳統(tǒng)教學方法顯然已經(jīng)跟不上現(xiàn)代化的教學要求,不利于培養(yǎng)學生的綜合素質(zhì)和創(chuàng)新能力。因此,有必要借助于現(xiàn)代化媒體技術和統(tǒng)計軟件,制作內(nèi)容、圖形、聲音、圖像等結合起來的多媒體課件?!矫?,采用多媒體教學手段進行輔助教學,能夠?qū)⒔處煆暮芏嘀貜托缘膭趧又薪饷摮鰜恚處熆梢詫⒏嗟木蜁r間投入到如何分析和解釋問題,以提高課堂效率,與學生有效地進行課堂交流。另一方面,用圖形動畫和模擬實驗等多媒體作為輔助教學手段,便于學生對概念、圖形等的理解。如投幣試驗、高爾頓板釘實驗等小動畫在不占用太多課堂時間的同時,又增添了課堂的趣味性。又如在利用Mathematica軟件演示大數(shù)定律和中心極限定理時,就能將抽象的定理化為形象的直觀認識,達到一定的教學效果。在處理概率統(tǒng)計問題中,教師也會面對大量的數(shù)據(jù),另外,集數(shù)學計算、處理與分析為一身的數(shù)據(jù)處理軟件如:Excel,Matlab,Mathematic,SAS,SPSS等,在計算一些冗長數(shù)據(jù)時可以簡化計算,降低理論難度。而且,在教師的演示過程中,能讓學生初步了解如何應用計算機及軟件,將所學的知識用于解決生產(chǎn)生活中的實際問題,從而激發(fā)他們學習概率知識的熱情,提高他們利用計算機解決問題的能力。最后,在教學過程中,教師應該考慮到各個專業(yè)的學生今后學習與發(fā)展的需要,在滿足教學大綱的要求下,選擇與其專業(yè)關系緊密的知識點進行重點講授。同時,在講授過程中,本著以人為本的教學理念,注意多種方法靈活應用,建立積極的互動教學模式,盡量避免教師在課堂上滿堂灌、填鴨式地教學,充分調(diào)動學生學習的主動性,挖掘?qū)W生的學習潛能,最大限度地發(fā)揮和發(fā)展學生的聰明才智,使學生能理解概率統(tǒng)計這一學科領域思想方法的精髓。論文參考文獻:[1]盛驟,謝式千。潘承毅.概率論與數(shù)理統(tǒng)計[M].北京:高等教育出版社,2009.[2] 姜啟源.數(shù)學模型[M].北京:高等教育出版社。2003:4—7.[3] 徐鐘濟.蒙特卡羅方法[M].上海:上??茖W技術出版社,1985:171—188.[4] 郝曉斌,董西廣.數(shù)學建模思想在概率論與數(shù)理統(tǒng)計課程教學中的應用[J].經(jīng)濟研究導刊,2010,90(16):244—245.[5]徐榮聰,游華.(概率論與數(shù)理統(tǒng)計)課程案例教學法[J].寧德師專學報(自然科學版),2008(2):145—147.第四篇:概率論與數(shù)理統(tǒng)計概率論與數(shù)理統(tǒng)計一、隨機事件和概率考試內(nèi)容隨機事件與樣本空間 事件的關系與運算 完備事件組 概率的概念 概率的基本性質(zhì) 古典型概率 幾何型概率 條件概率 概率的基本公式 事件的獨立性 獨立重復試驗考試要求1.了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算.2.理解概率、條件概率的概念,掌握概率的基本性質(zhì),會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式,以及貝葉斯(Bayes)公式.3.理解事件獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,、隨機變量及其分布考試內(nèi)容隨機變量 隨機變量分布函數(shù)的概念及其性質(zhì) 離散型隨機變量的概率分布 連續(xù)型隨機變量的概率密度 常見隨機變量的分布 隨機變量函數(shù)的分布考試要求1.理解隨機變量的概念,理解分布函數(shù)的概念及性質(zhì),會計算與隨機變量相聯(lián)系的事件的概率.2.理解離散型隨機變量及其概率分布的概念,掌握0-1分布、二項分布、幾何分布、超幾何分布、泊松(Poisson)分布 及其應用.,.理解連續(xù)型隨機變量及其概率密度的概念,掌握均勻分布、正態(tài)分布、指數(shù)分布及其應用,其中參數(shù)為 的指數(shù)分布 的概率密度為5.會求隨機變量函數(shù)的分布.三、多維隨機變量及其分布考試內(nèi)容多維隨機變量及其分布 二維離散型隨機變量的概率分布、邊緣分布和條件分布 二維連續(xù)型隨機變量的概率密度、邊緣概率密度和條件密度隨機變量的獨立性和不相關性 常用二維隨機變量的分布 兩個及兩個以上隨機變量簡單函數(shù)的分布考試要求1.理解多維隨機變量的概念,、邊緣分布和條件分布,理解二維連續(xù)型隨機變量的概率密度、邊緣密度和條件密度,會求與二維隨機變量相關事件的概率.2.理解隨機變量的獨立性及不相關性的概念,.掌握二維均勻分布,了解二維正態(tài)分布的概率密度,理解其中參數(shù)的概率意義.4.會求兩個隨機變量簡單函數(shù)的分布,、隨機變量的數(shù)字特征考試內(nèi)容隨機變量的數(shù)學期望(均值)、方差、標準差及其性質(zhì) 隨機變量函數(shù)的數(shù)學期望 矩、協(xié)方差、相關系數(shù)及其性質(zhì)考試要求1.理解隨機變量數(shù)字特征(數(shù)學期望、方差、標準差、矩、協(xié)方差、相關系數(shù))的概念,會運用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征.、大數(shù)定律和中心極限定理考試內(nèi)容切比雪夫(Chebyshev)不等式 切比雪夫大數(shù)定律 伯努利(Bernoulli)大數(shù)定律 辛欽(Khinchine)大數(shù)定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列維-林德伯格(LevyLindberg)定理考試要求1.了解切比雪夫不等式.2.了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨立同分布隨機變量序列的大數(shù)定律).3.了解棣莫弗拉普拉斯定理(二項分布以正態(tài)分布為極限分布)和列維林德伯格定理(獨立同分布隨機變量序列的中心極限定理).六、數(shù)理統(tǒng)計的基本概念考試內(nèi)容總體 個體 簡單隨機樣本 統(tǒng)計量 樣本均值 樣本方差和樣本矩分布分布分布 分位數(shù) 正態(tài)總體的常用抽樣分布考試要求1.理解總體、簡單隨機樣本、統(tǒng)計量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為:2.了解 分布、分布和 分布的概念及性質(zhì),了解上側 分位數(shù)的概念并會查表計算.3.了解正態(tài)總體的常用抽樣分布.七、參數(shù)估計考試內(nèi)容點估計的概念 估計量與估計值 矩估計法 最大似然估計法 估計量的評選標準 區(qū)間估計的概念 單個正態(tài)總體的均值和方差的區(qū)間估計 兩個正態(tài)總體的均值差和方差比的區(qū)間估計考試要求1.理解參數(shù)的點估計、估計量與估計值的概念.2.掌握矩估計法(一階矩、二階矩)和最大似然估計法.3.了解估計量的無偏性、有效性(最小方差性)和一致性(相合性)的概念,并會驗證估計量的無偏性.理解區(qū)間估計的概念,會求單個正態(tài)總體的均值和方差的置信區(qū)間,、假設檢驗考試內(nèi)容顯著性檢驗 假設檢驗的兩類錯誤 單個及兩個正態(tài)總體的均值和方差的假設檢驗考試要求1.理解顯著性檢驗的基本思想,掌握假設檢驗的基本步驟,了解假設檢驗可能產(chǎn)生的兩類錯誤.2.掌握單個及兩個正態(tài)總體的均值和方差的假設檢驗.數(shù)學大綱和去年相比變化之處從拿到大綱的情況來說,今年的大綱和往年是沒有什么變化,這一點和我前面所預測的是基本上一致的。當然大綱沒有變化,對大家也有一個好處,也就是大家可以按照原先的計劃,按步就班的走,不用考慮有一些計劃調(diào)整等等這樣一類的東西。2011年考試的難度是有一個怎樣的趨勢至于難度,咱們要說2011年的難度,可以看一下這幾年的難度水平。數(shù)一2008,2009年的難度水平基本上是一致的,2010年的考試難度有一定的上升,我認為2011年難度水平應該有所下降。大綱沒有變,而考研是一個選拔
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1