freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

圓柱體積教學(xué)反思及擴(kuò)展資料(編輯修改稿)

2024-10-03 23:14 本頁面
 

【文章內(nèi)容簡介】 推導(dǎo)過程加深學(xué)生印象。同學(xué)們在操作、比較中,圍繞圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學(xué)生從形象具體的知識形成過程中,認(rèn)識得以升華(較抽象的認(rèn)識——公式)。三、注重學(xué)法指導(dǎo)和數(shù)學(xué)思想方法的滲透?!皩W(xué)會學(xué)習(xí)”是對學(xué)生“學(xué)”的最高要求,因此在教學(xué)中不但要教給學(xué)生知識,更要教給學(xué)生學(xué)習(xí)的方法,讓學(xué)生終身受用。在本節(jié)課的教學(xué)中,我把“觀察、猜想、驗(yàn)證”的學(xué)法指導(dǎo),貫穿于整個學(xué)習(xí)過程,使學(xué)生學(xué)得主動有效。在探究方法的引導(dǎo)上從回憶圓的面積公式推導(dǎo)入手,確定轉(zhuǎn)化的方法,體驗(yàn)轉(zhuǎn)化的過程,驗(yàn)證轉(zhuǎn)化的結(jié)果,使“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想在課中得到良好滲透,學(xué)生進(jìn)一步體會到科學(xué)、條理的數(shù)學(xué)思維方式,從而發(fā)展了學(xué)生的數(shù)學(xué)能力。本課中還存在很多不足在例如探究過程中沒有充分的給予學(xué)生說一說、指一指的時間,在引導(dǎo)學(xué)生思考已知圓柱底面半徑(r)和高(h)、已知圓柱底面直徑(d)和高(h)、已知圓柱底面周長(c)和高(h)三種情況時,教師引導(dǎo)過多,應(yīng)給予學(xué)生更充分的思考空間,讓其考慮如果沒有底面積,知道哪個條件也可以求圓柱體積。最后,在練習(xí)中缺少反饋,學(xué)生做完練習(xí)后,應(yīng)及時做到直觀反饋,總結(jié)優(yōu)缺點(diǎn),指導(dǎo)學(xué)生做題。圓柱體積教學(xué)反思8圓柱的體積計算方法的推導(dǎo)。教學(xué)前我就思考,不僅要讓學(xué)生掌握圓柱體積的計算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長方體正方體的體積計算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示掛圖:等底等高的長方體、正方體、圓柱,學(xué)生通過觀察,作出猜測:(1)圓柱的體積等于長方體和正方體的體積。(2)圓柱的體積也等于底面積乘高。猜測是否準(zhǔn)確呢?點(diǎn)燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用學(xué)具驗(yàn)證圓柱轉(zhuǎn)化成長方體過程,并討論思考:這個圓柱體與轉(zhuǎn)化后的長方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。還有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長方體的長是圓柱的底面周長的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長的一半底面半徑高。首先我對這種方法加以肯定,然后利用圓的周長和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。圓柱體積教學(xué)反思9本節(jié)課主要是引導(dǎo)學(xué)生探索并掌握圓柱的體積公式,主要重視了以下幾方面:重視先猜想、再驗(yàn)證的思路來引入教學(xué)。新課伊始,課件出示三個幾何體的底面和高,引導(dǎo)學(xué)生來觀察這三個幾何體,發(fā)現(xiàn)它們的底面積都相等,高也都相等。進(jìn)一步引導(dǎo)思考:想一想,長方體和正方體的體積相等嗎?為什么?猜一猜,圓柱的體積與長方體和正方體的體積相等嗎?學(xué)生認(rèn)同,并提出等于底面積乘高。教師再次拋出問題:這僅僅是猜想,那用什么辦法驗(yàn)證呢?今天這節(jié)課就來研究這個問題。重視利用知識、方法的遷移來展開教學(xué)。本課的例題探索,有一個目標(biāo)就是使學(xué)生在活動中進(jìn)一步體會“轉(zhuǎn)化”方法的價值,培養(yǎng)應(yīng)用已有知識解決新問題的能力,發(fā)展空間觀念和初步的推理能力。因此,筆者在執(zhí)教時,根據(jù)陳星月的回答順勢復(fù)習(xí)了圓面積的推導(dǎo):把一個圓平均分成16份、32份、64份或更多,剪開后可以拼成近似的長方形,圓的面積就可以轉(zhuǎn)化成長方形的面積進(jìn)行計算。接著提問:那么,受這個啟發(fā),那我們能不能將圓柱轉(zhuǎn)化成長方體來計算體積呢?首先實(shí)物演示圓柱切拼的過程。把圓柱的底面平均分成16份,切開后可以拼成一個近似的長方體。然后進(jìn)行課件演示,發(fā)現(xiàn):把圓柱的底面平均分的份數(shù)越多,拼成的幾何體會越來越接近長方體。這樣有利于激活學(xué)生已有的知識和經(jīng)驗(yàn),使學(xué)生充分體會圓柱體積公式推導(dǎo)過程的39。合理性,并不斷豐富對圖形轉(zhuǎn)化方法的感受。重視通過核心問題的討論和板書的精當(dāng)設(shè)計來突出重點(diǎn)、突破難點(diǎn)。核心問題即指中心問題,是諸多問題中相對最具思維價值、最利于學(xué)生思考及最能揭示事物本質(zhì)的問題。它是在教學(xué)過程中,為學(xué)生更好地理解和掌握新知、更好地積累學(xué)習(xí)經(jīng)驗(yàn)和方法,針對具體教學(xué)內(nèi)容,提煉而成的教學(xué)中心問題。就如圓柱體積的計算而言,在這節(jié)課的教學(xué)過程中,教師抓住“圓柱的體積可能跟圓柱的哪些條件有關(guān)呢?”“拼成的長方體與原來的圓柱有什么關(guān)系?”“要計算圓柱的體積一般要知道哪些條件?”這三個問題,使學(xué)生在獲取圓柱體積公式的同時又了解了體積公式的由來,并及時總結(jié)了思考問題的方法。核心問題也可以指為了探究知識的來龍去脈而在關(guān)鍵環(huán)節(jié)提出的指向性問題。當(dāng)然,需要注意和改進(jìn)的地方是:書寫格式的規(guī)范。圓柱體積教學(xué)反思10一、讓操作更詳實(shí),留下思考的痕跡動手實(shí)踐、自主探索、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。組織學(xué)生在實(shí)踐操作中探究發(fā)現(xiàn)規(guī)律,從感性到理性,從實(shí)踐到認(rèn)識,從具體到抽象,引導(dǎo)學(xué)生積極動手動腦、概括分析、抽象推理等,這不僅有利于學(xué)生思維的發(fā)展,而且也可以加深學(xué)生對數(shù)學(xué)知識的理解和掌握。尤其是對于幾何知識的學(xué)習(xí),課堂教學(xué)中的動手操作就顯得更加重要。究竟自己在教學(xué)的時候是否用好了學(xué)生的操作,讓學(xué)生對操作的過程有深刻的體會與認(rèn)識,在操作中是否激起了學(xué)生的思考。留下自己思考的痕跡,為進(jìn)一步探索知識做好準(zhǔn)備。二、讓觀察更細(xì)致,尋找知識的聯(lián)系數(shù)學(xué)觀察力,是新課標(biāo)中對提出學(xué)生應(yīng)必備的一種重要數(shù)學(xué)能力。學(xué)生在操作的基礎(chǔ)上要學(xué)會觀察,挖掘知識之間的聯(lián)系,真正體現(xiàn)操作的價值。通過學(xué)生直觀的觀察,讓學(xué)生去挖掘數(shù)學(xué)本質(zhì)上的一些聯(lián)系,讓學(xué)生在知識的探索過程中有一個完成的體驗(yàn)過程,也對所學(xué)的知識有一個更好的理解。三、讓探索更深入,渴求方法的掌握如果我們在教學(xué)的過程中能夠很好地重視學(xué)生的操作經(jīng)驗(yàn)積累,并形成一定的方法,相信學(xué)生在溝通新知和舊知之間的聯(lián)系時會更加的自然而然,也能順利的實(shí)現(xiàn)知識的正遷移。因此,在數(shù)學(xué)學(xué)習(xí)的過程中,應(yīng)該讓學(xué)生的探索過程更加的深入,形成一定的學(xué)習(xí)方法,為今后的學(xué)習(xí)積累知識經(jīng)驗(yàn)的同時圓柱體積教學(xué)反思11一、導(dǎo)入時,要突破教材,要有所創(chuàng)新在進(jìn)行圓柱的體積的導(dǎo)入時,課本上是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,那么再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜,《圓柱體積》教學(xué)反思。猜想計算方法固然有好處,但要讓學(xué)生馬上做實(shí)驗(yàn),理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,我認(rèn)為,不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并
點(diǎn)擊復(fù)制文檔內(nèi)容
合同協(xié)議相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1