【總結(jié)】雙基達標?限時20分鐘?1.下列敘述錯誤的是().A.a(chǎn)rctana表示一個??????-π2,π2內(nèi)的角B.若x=arcsina,則sinx=aC.若tanx2=a,則x=arctan2aD.a(chǎn)rcsina、arccosa中的a∈[-1,1]答案C2.若α
2024-11-27 23:47
【總結(jié)】雙基達標?限時20分鐘?1.如圖在單位圓中角α的正弦線、正切線完全正確的是().A.正弦線PM,正切線A′T′B.正弦線MP,正切線A′T′C.正弦線MP,正切線ATD.正弦線PM,正切線AT解析根據(jù)單位圓中的三角函數(shù)線可知C正確.答案C2.如果MP、OM分
2024-11-27 23:51
【總結(jié)】雙基達標?限時20分鐘?1.若α=-3,則角α的終邊在().A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限解析∵-π-3-π2,∴α是第三象限角.答案C2.將1920°轉(zhuǎn)化為弧度數(shù)為().
【總結(jié)】一、選擇題1.用力F推動一物體水平運動sm,設F與水平面的夾角為θ,則力F對物體所做的功為()A.|F|·sB.F·cosθ·sC.F·sinθ·sD.|F|·cosθ·s【解析】W=F·s=|F|·|s|
2024-11-28 01:12
【總結(jié)】§向量在幾何中的應用(課前預習案)班級:___姓名:________編寫:一、新知導學1.兩個向量的數(shù)量積:2.平面兩向量數(shù)量積的坐標表示:3.向量平
2024-11-19 06:26
【總結(jié)】一、選擇題1.|a|=1,|b|=2,c=a+b且c⊥a,則a與b的夾角為()A.30°B.60°C.120°D.150°【解析】c⊥a,設a與b的夾角為θ,則(a+b)·a=0,所以a2+a·b=0,所以a2+
2024-11-27 23:43
【總結(jié)】學習目標3.用向量證明平面幾何、解析幾何問題的步驟。4.體會向量在解決問題中的應用,培養(yǎng)運算及解決問題的能力。學習過程一、課前準備(預習教材117頁~122頁,找出疑惑之處)二、新課導學用例,已知平行四邊形ABCD、E、E在對角線BD上,并且=BEFD.求證:AECF是平行四邊形
【總結(jié)】等差數(shù)列的前n項和(二)雙基達標限時20分鐘1.一個只有有限項的等差數(shù)列,它的前5項的和為34,最后5項的和為146,所有項的和為234,則它的第7項等于().A.22B.21C.19D.18解析∵a1+a2+a3+a4+a5=34,an+an-1+an-2
2024-11-27 23:54
【總結(jié)】等差數(shù)列的前n項和(一)雙基達標限時20分鐘1.等差數(shù)列{an}的前n項和為Sn,若a2+a7+a9=15,則S11的值為().B.50C.55D.110解析由等差數(shù)列性質(zhì)得a2+a7+a9=3a6=15,∴a6=5,S11=11a6=C.答案C
【總結(jié)】一元二次不等式及其解法雙基達標限時20分鐘1.不等式x-2x+1≤0的解集是().A.(-∞,-1)∪(-1,2]B.[-1,2]C.(-∞,-1)∪[2,+∞)D.(-1,2]答案D2.設a-1,則關于x的不等式a(x-a)(x-1a)0的解集是
【總結(jié)】雙基達標?限時20分鐘?1.化簡(cos47°30′-sin47°30′)(sin23°cos8°-sin67°sin8°)=().B.-14C.1D.-1解析原式=(cos27°30′+
2024-11-27 23:35
【總結(jié)】2.1.1向量的概念一.學習要點:向量的有關概念二.學習過程:一、復習:在現(xiàn)實生活中,我們會遇到很多量,其中一些量在取定單位后用一個實數(shù)就可以表示出來,如長度、質(zhì)量等.還有一些量,如我們在物理中所學習的位移,是一個既有大小又有方向的量,這種量就是我們本章所要研究的向量.二、新課學習::
【總結(jié)】2.1.3向量的減法一.學習要點:向量的減法二.學習過程:一、復習:向量加法的法則:二、新課學習:1.用“相反向量”定義向量的減法(1)“相反向量”的定義:(2)規(guī)定:零向量的相反向量仍是零向量.?(?a)
2024-11-27 23:46
【總結(jié)】第二章一、選擇題1.把平面上一切單位向量平移到共同始點,那么這些向量的終點構(gòu)成的圖形是()A.一條線段B.一段圓弧C.兩個孤立的點D.一個圓[答案]D[解析]圖形是一個以始點為圓心,以1為半徑的圓.2.把所有相等的向量平移到同一起點后,這些向量的終點將落在(
【總結(jié)】第二章一、選擇題1.向量(AB→+MB→)+(BO→+BC→)+OM→等于()A.BC→B.AB→C.AC→D.AM→[答案]C[解析]原式=AB→+BC→+MB→+BO→+OM→=AC→+0=AC→.2.若a、b為非零向量,則下列