【總結(jié)】2.平面向量共線(xiàn)的坐標(biāo)表示命題方向1三點(diǎn)共線(xiàn)問(wèn)題例1.O是坐標(biāo)原點(diǎn),OA→=(k,12),OB→=(4,5),OC→=(10,k).當(dāng)k為何值時(shí),A、B、C三點(diǎn)共線(xiàn)?[分析]由A、B、C三點(diǎn)共線(xiàn)可知,AB→、AC→、BC→中任兩個(gè)共線(xiàn),由坐標(biāo)表示的共線(xiàn)條件解方
2024-11-19 20:38
【總結(jié)】撰稿教師:李麗麗學(xué)習(xí)目標(biāo)1.了解平面向量基本定理,掌握平面向量基本定理及其應(yīng)用2.利用平面向量基本定理解決有關(guān)問(wèn)題學(xué)習(xí)過(guò)程一、課前準(zhǔn)備(預(yù)習(xí)教材96頁(yè)~98頁(yè),找出疑惑之處)二、新課導(dǎo)學(xué)1、平行向量基本定理2、平面內(nèi)任一向量是否可以用兩個(gè)不共線(xiàn)的向量來(lái)表示。如圖,設(shè)2
2024-11-18 16:44
【總結(jié)】綜合檢測(cè)(二)第二章平面向量(時(shí)間:90分鐘,滿(mǎn)分:120分)一、選擇題(本大題共10小題,每小題5分,共50分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.下列說(shuō)法中,正確的是()A.若向量|a|=|b|,則a=b或a=-bB.若a∥b,b∥c,則a∥cC.長(zhǎng)度不相
2024-11-28 01:55
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量共線(xiàn)的坐標(biāo)表示課時(shí)跟蹤檢測(cè)新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難向量共線(xiàn)的判定1、2、310由向量共線(xiàn)求參數(shù)56、7、8向量共線(xiàn)的應(yīng)用49111.已知m,n∈R,向量a=(2m+1,m+n)與b=
2024-12-08 20:21
【總結(jié)】章末質(zhì)量評(píng)估(二)(時(shí)間:90分鐘滿(mǎn)分:120分)一、選擇題(本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.給出下列等式:(1)a·0=0;(2)0·a=0;(3)若a,b同向共線(xiàn),則a·b=|a|
2024-11-27 23:35
【總結(jié)】第二章一、選擇題1.已知點(diǎn)A(7,1)、B(1,4),直線(xiàn)y=12ax與線(xiàn)段AB交于點(diǎn)C,且AC→=2CB→,則a等于()A.2B.1C.45D.53[答案]A[解析]設(shè)C(x,y),則(x-7,y-1)=(2-2x,8-2y),∴????
2024-11-27 23:40
【總結(jié)】第二章一、選擇題1.把平面上一切單位向量平移到共同始點(diǎn),那么這些向量的終點(diǎn)構(gòu)成的圖形是()A.一條線(xiàn)段B.一段圓弧C.兩個(gè)孤立的點(diǎn)D.一個(gè)圓[答案]D[解析]圖形是一個(gè)以始點(diǎn)為圓心,以1為半徑的圓.2.把所有相等的向量平移到同一起點(diǎn)后,這些向量的終點(diǎn)將落在(
2024-11-27 23:47
【總結(jié)】向量共線(xiàn)的條件和軸上向量的坐標(biāo)運(yùn)算一般地,實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘運(yùn)算,記作λa,它的長(zhǎng)度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當(dāng)λ0時(shí),λa的方向與a方向相同;當(dāng)λ0時(shí),λa的方向與a方向相反;特別地,當(dāng)
2024-11-18 12:10
【總結(jié)】第二章一、選擇題1.向量(AB→+MB→)+(BO→+BC→)+OM→等于()A.BC→B.AB→C.AC→D.AM→[答案]C[解析]原式=AB→+BC→+MB→+BO→+OM→=AC→+0=AC→.2.若a、b為非零向量,則下列
2024-11-28 01:12
【總結(jié)】第二章一、選擇題1.下列等式:①0-a=-a;②-(-a)=a;③a+(-a)=0;④a+0=a;⑤a-b=a+(-b);⑥a+(-a)=()A.3B.4C.5D.6[答案]C[解析]①、②、④、⑤、⑥正確,③不正確,故
2024-11-27 23:46
【總結(jié)】 《平面向量正交分解及坐標(biāo)表示》導(dǎo)學(xué)案 【學(xué)習(xí)目標(biāo)】 (1)理解平面向量的坐標(biāo)的概念; (2)掌握平面向量的坐標(biāo)運(yùn)算; (3)會(huì)根據(jù)向量的坐標(biāo),判斷向量是否共線(xiàn). 【重點(diǎn)難點(diǎn)】 教學(xué)重點(diǎn)...
2025-04-03 01:19
【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.如果e1、e2是平面α內(nèi)所有向量的一組基底,那么下列命題正確的是().A.若實(shí)數(shù)λ1、λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.對(duì)空間任一向量a都可以表示為a=λ1e1+λ2e2,其中λ1、λ2∈RC.λ1e1+λ2e
【總結(jié)】《平面向量共線(xiàn)的坐標(biāo)表示》說(shuō)課稿【教材分析】(一)地位和作用本節(jié)內(nèi)容在教材中啟著向量坐標(biāo)運(yùn)算延伸的作用,它是在學(xué)生對(duì)平面向量的基本定理有了充分的認(rèn)識(shí)和正確的應(yīng)用后產(chǎn)生的,平面向量共線(xiàn)的坐標(biāo)表示則為用“數(shù)”的運(yùn)算處理“形”的問(wèn)題搭建了橋梁,同時(shí)也為定比分點(diǎn)坐標(biāo)公式和中點(diǎn)坐標(biāo)公式的推導(dǎo)奠定了基礎(chǔ);向量共線(xiàn)的坐標(biāo)表示,對(duì)立體幾何教材也有著深遠(yuǎn)的意義,可使空間結(jié)構(gòu)系統(tǒng)地代數(shù)化
2025-08-07 15:05
【總結(jié)】平面向量的坐標(biāo)表示與運(yùn)算OxyijaA(x,y)a1.以原點(diǎn)O為起點(diǎn)作,點(diǎn)A的位置由誰(shuí)確定?aOA?由a唯一確定2.點(diǎn)A的坐標(biāo)與向量a的坐標(biāo)的關(guān)系??jī)烧呦嗤蛄縜坐標(biāo)(x,y)一一對(duì)應(yīng)復(fù)習(xí)回顧已知
2024-11-18 12:09
【總結(jié)】平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運(yùn)算1.下列說(shuō)法正確的有()①向量的坐標(biāo)即此向量終點(diǎn)的坐標(biāo).②位置不同的向量其坐標(biāo)可能相同.③一個(gè)向量的坐標(biāo)等于它的終點(diǎn)坐標(biāo)減去它的始點(diǎn)坐標(biāo).④相等的向量坐標(biāo)一定相同.A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)解析:向量的坐標(biāo)是其終點(diǎn)坐標(biāo)減去起點(diǎn)對(duì)
2024-11-19 17:32