【總結】等腰三角形的性質1:等腰三角形的兩個底角相等(簡寫成“等邊對等角”)注意:在三角形中,等邊對等角。一個用符號語言表示為:在△ABC中,∵AC=AB()∴∠B=∠C(
2025-07-21 04:13
【總結】八年級上冊等腰三角形(第4課時)課件說明?本節(jié)課在學習了軸對稱、等邊三角形的性質及判定的基礎上,探究直角三角形的一條特殊性質,它反映了直角三角形中的邊角關系.本節(jié)課是等邊三角形性質的簡單運用,同時也為九年級學習銳角三角函數作了一定的知識儲備.?學習目標:1.探索含30°角
2025-11-15 15:53
【總結】動手做一做ACB△ABC有什么特點?看一看有兩條邊相等的三角形叫做等腰三角形.等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角.ACB腰腰底邊頂角底角底角1、等腰三
2024-12-07 15:39
【總結】......等腰三角形考點一、等腰三角形的特征和識別⑴等腰三角形的兩個_____________相等(簡寫成“________________”)⑵等腰三角形的_________________、__________
2025-04-17 08:21
【總結】第一篇:等腰三角形的性質說課稿 《等腰三角形的性質》說課稿 和縣城南初中 楊禮瓊 各位領導、老師們:大家好! 今天我說課的內容是:義務教育課程人教版《數學》八年級上冊第十二章第三節(jié)第一課時—...
2025-11-06 05:57
【總結】一、復習1、什么叫軸對稱圖形和軸對稱?答:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形。這條直線叫做對稱軸。2、軸對稱與軸對稱圖形的聯(lián)系和區(qū)別是什么?對于兩個圖形,如果沿一條直線對折后,它們能完全重合,那么稱這兩個圖形成軸對稱。這條直線就是對稱軸。二
2025-11-15 13:18
【總結】北師大版九年級上冊(菏澤)東明縣第一初級中學趙東魯第一章證明(二)之等腰三角形的性質北師大版九年級上冊(菏澤)東明縣第一初級中學趙東魯
2025-10-28 23:55
【總結】第一篇:《等腰三角形的性質》教案 《等腰三角形的性質》教案 【教材分析】 本節(jié)是在學生學習了三角形的基本概念,全等三角形和軸對稱知識的基礎上,進一步研究的一種特殊三角形——等腰三角形。等腰三角形...
2025-11-06 00:45
【總結】等腰三角形(三)◆隨堂檢測1一個等邊三角形的角平分線、高、中線的總條數為_________.,已知線段AB,分別以AB、為圓心,大于12AB長為半徑畫弧,兩弧相交于點C、Q,連結CQ與AB相交于點D,連結AC,BC.那么:(1)∠ADC?________度;(2)當線段4
2025-11-04 01:46
【總結】宇軒圖書下一頁上一頁末頁目錄首頁第20講等腰三角形考點知識精講宇軒圖書下一頁上一頁末頁目錄首頁考點訓練中考典例精析舉一反三考點知識精講
2025-01-15 06:47
【總結】同學們好!【看看誰的手巧】請把一根塑料管剪成三段,把它們首尾相連成一個等腰三角形剩下的兩邊長為8cm和6cm等腰三角形圓規(guī)刻度尺量角器123能否用你得到的工具來判斷△ABC是不是等腰三角形?★等邊對等角★等角對等邊因為AB=AC所以∠B=∠C所
2025-10-25 15:44
【總結】第一章三角形的證明1.等腰三角形(三)湖北宜昌市長江中學李玉平一、學生知識狀況分析本節(jié)課是等腰三角形的第三課時,通過前面兩課時的學習,學生已經掌握了等腰三角形的相關性質,并知道了用綜合法證明命題的基本要求和步驟。為學習等腰三角形的判定定理奠定了知識和方法的基礎。二、教學任務分析本節(jié)課的主要任務是探索等
2025-11-15 17:07
【總結】等腰三角形的性質衡陽市十五中汪楚折一折剪一剪展一展等腰三角形定義:有兩條邊相等的三角形叫做等腰三角形。相等的兩條邊(AB和AC)叫做腰另一條邊(BC)叫做底邊兩腰所夾的角(∠A)叫做頂角設問1:剛才剪紙得到的△ABC是軸對稱圖形嗎?它的對稱軸是什么?折痕AD所在
2025-11-13 00:54
【總結】等腰三角形的判定臨海中學初二備課組等腰三角形的判定學習目標自學指導討論練習課堂作業(yè)我們在上一節(jié)學習了等腰三角形的性質。現在你能回答我一些問題嗎?一、復習:1、等腰三角形的性質定理是什么?等腰三角形的兩個底角相等。(可以簡稱:等邊對等角)2、這個定理
2025-08-01 18:01
【總結】復習引入兩腰相等;等腰三角形有哪些特征呢?ABC,簡稱“在同一個三角形中,等邊對等角”;、底邊上的中線和底邊上的高互相重合。簡稱“等腰三角形三線合一”,對稱軸是底邊的中垂線。?:ΔABC中,已知AB=AC,?圖中有哪些角相等?∠B=∠C在同一個三角形
2025-08-01 13:41