【總結(jié)】題課題二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)第1課時(shí)8教教學(xué)目標(biāo)知識與技能1)掌握二次函數(shù)的圖象和性質(zhì),運(yùn)用配方法求解二次函數(shù)的對稱軸、頂點(diǎn)、y隨x的變化情況。數(shù)學(xué)思考1)通過二次函數(shù)頂點(diǎn)式的圖象和性質(zhì)討論二次函數(shù)y=ax2+bx+c一般形式的圖象性質(zhì)。問題解決1)通過對給定的一般二次函數(shù)形式進(jìn)行配方得到頂點(diǎn)
2025-04-16 12:39
【總結(jié)】-6o-4246246-2-2-4xy232??xy545???xy天才=1%的靈感+99%的汗水一.復(fù)習(xí):?(1)列表(2)描點(diǎn)(3)連線?是一條直線,所以我們在作一次圖像的時(shí)候只需要確定兩個(gè)點(diǎn),再過這兩個(gè)
2024-11-22 01:26
【總結(jié)】y=x2+c的圖象是什么?答:是拋物線?請?zhí)顚懴卤恚汉瘮?shù)開口方向?qū)ΨQ軸頂點(diǎn)坐標(biāo)Y的最值增減性在對稱軸左側(cè)在對稱軸右側(cè)y=ax2a>0a<0y=ax2+ca>0a<0向上Y軸(0,0)最小值是0Y隨x的增大而減小Y隨x的增
2024-11-21 00:15
【總結(jié)】二次函數(shù)y=ax2+bx+c圖象和性質(zhì)(4)xyoy=ax2y=ax2+ky=a(x–h)2y=a(x–h)2+k上下平移左右平移上下平移左右平移在上述移動(dòng)中圖象的開口方向、形狀、頂點(diǎn)坐標(biāo)、對稱軸,哪些有變化?哪些沒有變化?有變化的:拋
2024-11-20 23:47
【總結(jié)】課題二次函數(shù)的圖像和性質(zhì)教學(xué)內(nèi)容一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二
2025-07-26 04:32
【總結(jié)】二次函數(shù)的圖象和性質(zhì)1、小李從如圖所示的二次函數(shù)的圖象中,觀察得出了下面四條信息:(1)b2-4ac>0;(2)c>1;(3)ab>0;(4)a-b+c<0.你認(rèn)為其中錯(cuò)誤的有()yxO(第4題)A.2個(gè) B.3個(gè) C.4個(gè) D.1個(gè)第1題(-1,2)和點(diǎn)N(
2025-03-24 06:26
【總結(jié)】1二次函數(shù)y=a(x-h)2的圖象2?在同一坐標(biāo)系中作出二次函數(shù)y=3x2和y=3(x-1)2的圖象.3觀察圖象,回答問題?(1)函數(shù)y=3(x-1)2的圖象與y=3x2的圖象有什么關(guān)系?它是軸對稱圖形嗎?它的對稱軸和頂點(diǎn)坐標(biāo)分別是什么?(2)x取哪些值時(shí),函數(shù)y=3(x
2024-11-21 00:05
【總結(jié)】考點(diǎn)聚焦考點(diǎn)1二次函數(shù)的概念一般地,形如________________(a、b、c是常數(shù),a≠0)的函數(shù)稱為二次函數(shù).概念點(diǎn)撥:(1)等號左邊是函數(shù),右邊是關(guān)于自變量x的二次式,x的最高次數(shù)是2.(2)二次項(xiàng)系數(shù)a≠0.考點(diǎn)聚焦歸類探究y=ax2+bx+c(1)若y=(m+1)x
2024-11-22 02:30
【總結(jié)】二次函數(shù)的圖象和性質(zhì)2淡村鎮(zhèn)初級中學(xué)劉楓y=-2x2的圖象,并指出它的開口方向、對稱軸以及頂點(diǎn)坐標(biāo)。y=2x2的圖象,并指出它的開口方向、對稱軸以及頂點(diǎn)坐標(biāo)。y=ax2的圖象,并指出它的開口方向、對稱軸以及頂點(diǎn)坐標(biāo)。a0,開口向上a0,開口向下對稱軸為y軸頂點(diǎn)坐標(biāo)為(0,0)
【總結(jié)】......專題講解——二次函數(shù)的圖象知識點(diǎn)回顧:1.二次函數(shù)解析式的幾種形式:①一般式:(a、b、c為常數(shù),a≠0)②頂點(diǎn)式:(a、h、k為常數(shù),a≠0),其中(h,k)為頂點(diǎn)坐標(biāo)。③交點(diǎn)式:,其中是拋
2025-03-24 06:25
【總結(jié)】——培根二次函數(shù)的圖像與性質(zhì)(2)22yxyx???與的圖象一樣嗎?它們有什么相同點(diǎn)?不同點(diǎn)?22yxyx???與這兩種呢?有沒有其他形式的二次函數(shù)?學(xué)習(xí)目標(biāo)?y=ax2和y=ax2+c的圖象,能說出它們圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo);并能夠比較它們圖象的異同,理解a與c對
2024-11-24 16:57
【總結(jié)】園正教育考試研究中心數(shù)學(xué)個(gè)性化教學(xué)教案授課時(shí)間:年月日備課時(shí)間年月日年級九學(xué)科數(shù)學(xué)課時(shí)2h學(xué)生姓名授課主題=ax2+bx+c的圖像和性質(zhì)授課教師教學(xué)目標(biāo)=ax2+bx+c的頂點(diǎn)坐標(biāo)、對
2025-04-16 13:00
【總結(jié)】二次函數(shù)的圖像【學(xué)習(xí)目標(biāo)】1、會做函數(shù)y=ax2和y=ax2+c的圖象,并能比較它們的異同;理解a,c對二次函數(shù)圖象的影響,能正確說出兩函數(shù)的開口方向,對稱軸和頂點(diǎn)坐標(biāo);2、了解拋物線y=ax2上下平移規(guī)律;3、熟練掌握二次函數(shù)的性質(zhì);4、應(yīng)用二次函數(shù)解決實(shí)際問題。【主要概念】【1】二次函數(shù)的圖像二次函數(shù)的圖像是一條關(guān)于對稱的曲線
2025-05-16 02:58
【總結(jié)】§復(fù)習(xí)目標(biāo)1.掌握一元二次函數(shù)圖象的畫法及圖象的特征2.掌握一元二次函數(shù)的性質(zhì),能利用性質(zhì)解決實(shí)際問題3.會求二次函數(shù)在指定區(qū)間上的最大(小)值4.掌握一元二次函數(shù)、一元二次方程的關(guān)系。知識回顧1.函數(shù)叫做一元二次函數(shù)。2.一元二次函數(shù)的圖象是一條拋物線。3.任何一個(gè)二次函數(shù)都可把它的解析式配方為頂點(diǎn)式:,性質(zhì)如下:(1)圖象的頂
2025-05-15 23:30
【總結(jié)】第二十二章二次函數(shù)第2課時(shí)二次函數(shù)y=a(x-h(huán))2的圖象和性質(zhì)學(xué)習(xí)指南知識管理歸類探究分層作業(yè)當(dāng)堂測評學(xué)習(xí)指南教學(xué)目標(biāo)1.會畫二次函數(shù)y=a(x-h(huán))2的圖象并掌握它
2025-06-21 00:22