【總結(jié)】平面向量的基本定理及坐標(biāo)表示平面向量共線的坐標(biāo)表示課標(biāo)點(diǎn)擊平面向量共線的坐標(biāo)表示預(yù)習(xí)導(dǎo)學(xué)典例精析課堂導(dǎo)練課堂小結(jié)1.理解向量共線定理.2.掌握兩個(gè)向量平行(共線)的坐標(biāo)表示和會(huì)應(yīng)用其求解有關(guān)兩向量
2025-07-25 14:48
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運(yùn)算學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.下列說(shuō)法正確的有()①向量的坐標(biāo)即此向量終點(diǎn)的坐標(biāo).②位置不同的向量其坐標(biāo)可能相同.③一個(gè)向量的坐標(biāo)等于它的終點(diǎn)坐標(biāo)減去它的始點(diǎn)坐標(biāo).④相等的向量坐標(biāo)一定相同.A.1個(gè)B.2個(gè)
2024-12-09 03:42
【總結(jié)】平面向量基本定理1.設(shè)O點(diǎn)是平行四邊形ABCD兩對(duì)角線的交點(diǎn),下列向量組中可作為這個(gè)平行四邊形所在平面上表示其他所有向量的基底的是()①AD→與AB→;②DA→與BC→;③CA→與DC→;④OD→與OB→.A.①②B.①③C.①④D.③④解析:只要是平面上不共線的兩個(gè)向量
2024-11-19 20:38
【總結(jié)】平面向量應(yīng)用舉例1.如果一架飛機(jī)向東飛行200km,再向南飛行300km,記飛機(jī)飛行的路程為s,位移為a,那么()A.s>|a|B.s<|a|C.s=|a|D.s與|a|不能比大小解析:s=200+300=500(km),|a|=2020+3002=10013(km),∴s>
2024-11-19 19:36
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量數(shù)量積的坐標(biāo)表示、模、夾角課時(shí)跟蹤檢測(cè)新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難向量數(shù)量積的運(yùn)算1、412與模有關(guān)的問(wèn)題2、59、10向量的夾角與垂直問(wèn)題3、67、8、111.設(shè)向量a=(1,0),b=??
2024-12-09 03:41
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量數(shù)量積的坐標(biāo)表示、模、夾角學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.若向量a=(3,m),b=(2,-1),a·b=0,則實(shí)數(shù)m的值為()A.-32C.2D.6解析:a·b=3×2+m×(-1)=6-m=0
【總結(jié)】教學(xué)內(nèi)容:§平面向量的基本定理及坐標(biāo)表示(1)教學(xué)目標(biāo)1.理解平面向量的基本定理,會(huì)作出由已知一組基底所表示的向量;2.理解向量夾角及垂直的概念;3.理解向量的正交分解,感受正交分解的實(shí)際意義,掌握向量的坐標(biāo)表示。本節(jié)重點(diǎn)平面向量的基本定理,向量的正交分解及坐標(biāo)表示本節(jié)難點(diǎn)平面向量的
2024-11-20 03:14
【總結(jié)】 平面向量共線的坐標(biāo)表示 兩向量平行的條件 (1)設(shè)a=(x1,y1),b=(x2,y2),b≠0,則a∥b?x1y2-x2y1=0. (2)設(shè)a=(x1,y1),b=(x2,y...
2025-04-03 02:47
【總結(jié)】平面幾何中的向量方法學(xué)習(xí)目標(biāo)、垂直、相等、夾角和距離等問(wèn)題.——向量法和坐標(biāo)法.,體驗(yàn)向量在解決幾何問(wèn)題中的工具作用,培養(yǎng)創(chuàng)新精神.合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境問(wèn)題1:若O為△ABC重心,則=.問(wèn)題2:水渠橫斷面是四邊形ABCD,,且||=||,則這個(gè)四邊形為.
【總結(jié)】a?Ab?BCba???a?a?Ab?Bb?OCba???特點(diǎn):首尾相接特點(diǎn):共起點(diǎn)bBaABAab??:O特點(diǎn):共起點(diǎn):::向量與非零向量共線當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使得ab
2024-11-18 12:17
【總結(jié)】平面向量的基本定理及坐標(biāo)表示平面向量基本定理平面向量的正交分解及坐標(biāo)表示2020/12/25研修班2問(wèn)題提出1.向量加法與減法有哪幾種幾何運(yùn)算法則?λa?(1)|λa|=|λ||a|;(2)λ0時(shí),λa與a方向相同;λ0時(shí),λa與a方向相反;
【總結(jié)】復(fù)習(xí):共線向量基本定理:向量與向量共線當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù)使得(0)aa?b?ab??abbb0??0??已知平行四邊形ABCD中,M,N分別是BC,DC的中點(diǎn)且,用表
2024-11-17 12:03
【總結(jié)】課題平面向量基本定理教學(xué)目標(biāo)知識(shí)與技能理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義過(guò)程與方法在平面內(nèi),當(dāng)一組基底選定后,會(huì)用這組基底來(lái)表示其他向量情感態(tài)度價(jià)值觀啟發(fā)引導(dǎo),講練結(jié)合重點(diǎn)會(huì)應(yīng)用平面向量基本定理解決有關(guān)平面向量的綜合問(wèn)題難點(diǎn)同上教學(xué)設(shè)
【總結(jié)】平面向量應(yīng)用舉例命題方向1向量在平面幾何中的應(yīng)用例1求證:直徑所對(duì)的圓周角為直角.[分析]本題實(shí)質(zhì)就是證明AB→2BC→=0.[證明]設(shè)AO→=a,OB→=b,則AB→=a+b,OC→=a,BC→=a-b,|a|=|b|.
2024-11-19 19:09
【總結(jié)】平面向量共線的坐標(biāo)表示平面向量的坐標(biāo)表示.jyixayxajiyx??使得,、且只有一對(duì)實(shí)數(shù)向量基本定理可知,有,由平面任作一個(gè)向量作為基底,、向量軸方向相等的兩個(gè)單位軸、分別取與在平面坐標(biāo)系內(nèi),我們xOijay復(fù)習(xí).).(,)(),(軸上的坐標(biāo)在叫
2025-06-05 22:30