【總結】"福建省長樂第一中學2021高中數(shù)學第一章《幾個常用函數(shù)的導數(shù)》教案新人教A版選修2-2"教學目標:1.使學生應用由定義求導數(shù)的三個步驟推導四種常見函數(shù)yc?、yx?、2yx?、1yx?的導數(shù)公式;2.掌握并能運用這四個公式正確求函數(shù)的導數(shù).教學重點:四種常見函數(shù)yc?、
2024-12-05 06:42
【總結】"福建省長樂第一中學2020高中數(shù)學第一章《》教案新人教A版選修2-2"一:教學目標知識與技能目標通過求曲邊梯形的面積和變速直線運動的路程,了解定積分的背景;能用定積分的定義求簡單的定積分;理解掌握定積分的幾何意義;過程與方法借助于幾何直觀定積分的基本思想,理解定積分的概念;
2024-11-19 23:25
【總結】1.3.2函數(shù)的極值與導數(shù)(1)一、教學目標:理解函數(shù)的極大值、極小值、極值點的意義.掌握函數(shù)極值的判別方法.進一步體驗導數(shù)的作用.二、教學重點:求函數(shù)的極值.教學難點:嚴格套用求極值的步驟.三、教學過程:(一)函數(shù)的極值與導數(shù)的關系1、觀察下圖中的曲線a點的函數(shù)值f(a)比它臨近點的函數(shù)值都大.b點的函數(shù)值f(
2024-11-19 22:43
【總結】§學習目標1.理解曲邊梯形面積的求解思想,掌握其方法步驟;2.了解定積分的定義、性質及函數(shù)在上可積的充分條件;3.明確定積分的幾何意義和物理意義;4.無限細分和無窮累積的思維方法.預習與反饋(預習教材P42~P47,找出疑惑之處)1.用化歸為計算矩形面積和逼近的思想方法求出曲邊遞形的面積的具體步驟為、
2024-12-08 08:44
【總結】歸納是通過對特例的觀察和綜合去發(fā)現(xiàn)一般規(guī)律,一般通過觀察圖形或分析式子尋找規(guī)律,歸納過程的典型步驟是:先在諸多特例中發(fā)現(xiàn)某些相似性,再把相似性推廣為一個明確表述的一般命題,最后對該命題進行檢驗或論證.[例1]在德國布萊梅舉行的第48屆世乒賽期間,某商場櫥窗里用同樣的乒乓球堆成若干堆“正三棱錐”形的展品,其中第1堆只有一層,就一
2024-11-17 19:03
【總結】§學習目標;奎屯王新敞新疆一、預習與反饋(預習教材P22~P26,找出疑惑之處)復習1:以前,我們用定義來判斷函數(shù)的單調性.對于任意的兩個數(shù)x1,x2∈I,且當x1<x2時,都有,那么函數(shù)f(x)就是區(qū)間I上的函數(shù).復習2:'C?
2024-11-30 14:35
【總結】第一章 導數(shù)及其應用§教學目標:1.理解平均變化率的概念;2.了解平均變化率的幾何意義;3.會求函數(shù)在某點處附近的平均變化率教學重點:平均變化率的概念、函數(shù)在某點處附近的平均變化率;教學難點:平均變化率的概念.教學過程:一.創(chuàng)設情景為了描述現(xiàn)實世界中運動、過程等變化著的現(xiàn)象,在數(shù)學中引入了函數(shù),隨著對函數(shù)的研究,產(chǎn)生了微積分,微積分的創(chuàng)立以自然科學中四
2025-04-17 13:03
【總結】2.反證法理解反證法的概念,掌握反證法證題的步驟.本節(jié)重點:反證法概念的理解以及反證法的證題步驟.本節(jié)難點:應用反證法解決問題.1.反證法假設原命題(即在原命題的條件下,結論不成立),經(jīng)過正確的推理,最后得出矛盾,因此說明,從而證明了,這種證明方法叫做反證法
2024-11-17 23:14
【總結】云南省曲靖市麒麟?yún)^(qū)第七中學高中數(shù)學平面學案新人教A版必修2【學習目標】了解平面的概念,掌握平面的畫法及表示法掌握平面的基本性質及它們的作用3、會用文字語言、圖形語言、符號語言表示點、線、面的位置關系【學習重點】學習重點:掌握平面的基本性質及它們的作用學習難點:掌握平面的基本性質及它們的作用【自主學習】閱
2024-12-05 01:53
【總結】第5課時導數(shù)的綜合應用、極值、最值等..函數(shù)與導數(shù)是高中數(shù)學的核心內(nèi)容,函數(shù)思想貫穿中學數(shù)學全過程.導數(shù)作為工具,提供了研究函數(shù)性質的一般性方法.作為“平臺”,可以把函數(shù)、方程、不等式、圓錐曲線等有機地聯(lián)系在一起,在能力立意的命題思想指導下,與導數(shù)相關的問題已成為高考數(shù)學命題的必考考點之一.函數(shù)與方
2024-12-05 06:30
【總結】2.演繹推理理解演繹推理的概念,掌握演繹推理的形式,并能用它們進行一些簡單的推理,了解合情推理與演繹推理的聯(lián)系與區(qū)別.本節(jié)重點:演繹推理的結構特點.本節(jié)難點:三段論推理規(guī)則.1.演繹推理從的原理出發(fā),推出情況下的結論的推理形式.它的特點是:由的推理.它的特征是:當
2024-11-17 23:15
【總結】2.2直接證明與間接證明2.綜合法與分析法理解綜合法和分析法的概念及它們的區(qū)別,能熟練地運用綜合法、分析法證題.本節(jié)重點:綜合法與分析法的概念及用分析法與綜合法證題的過程、特點.本節(jié)難點:用綜合法與分析法證明命題.綜合法和分析法綜合法分析法定義利用和某些
2024-11-18 08:10
【總結】3.復數(shù)代數(shù)形式的乘除運算掌握復數(shù)的乘法、除法的運算法則并能熟練準確地運用法則解決相關的問題.本節(jié)重點:復數(shù)代數(shù)形式的乘除運算.本節(jié)難點:復數(shù)除法.1.復數(shù)乘法運算法則設z1=a+bi,z2=c+di(a、b、c、d∈R),則z1z2=(a+bi)(c+di)=.2
2024-11-17 23:19
【總結】1.7定積分的簡單應用利用定積分的思想方法解決一些簡單曲邊圖形的面積、變速直線運動的路程、變力作功等問題.本節(jié)重點:應用定積分的思想方法,解決一些簡單的諸如求曲邊梯形面積、變速直線運動的路程、變力作功等實際問題.本節(jié)難點:把實際問題抽象為定積分的數(shù)學模型.1.利用定
【總結】①復數(shù)的分類a+bi?????實數(shù)(b=0)虛數(shù)(b≠0)?????純虛數(shù)(a=0)非純虛數(shù)(a≠0)②處理有關復數(shù)概念的問題,首先可找準復數(shù)的實部與虛部(若復數(shù)為非標準代數(shù)形式,則應通過代數(shù)運算化為代數(shù)形式)