【總結(jié)】圓的標(biāo)準(zhǔn)方程xyOCM(x,y)圓心C(a,b),半徑r若圓心為O(0,0),則圓的方程為:標(biāo)準(zhǔn)方程P129例1若點(diǎn)到圓心的距離為d,(1)dr時(shí),點(diǎn)在圓外;(2)d=r時(shí),點(diǎn)在圓上;(3)dr時(shí),點(diǎn)在圓內(nèi);圓心(2,-4)
2024-11-06 16:44
【總結(jié)】§圓的參數(shù)方程制作:魏海霞一、溫故1、請(qǐng)同學(xué)們回顧前幾節(jié)課學(xué)的兩種形式的圓方程?2、圓的標(biāo)準(zhǔn)方程和一般方程的特點(diǎn)?二、提出問(wèn)題請(qǐng)同學(xué)們思考,圓是否還可以用其他形式的方程來(lái)表示?三、探索新知[參數(shù)方程]一般地,在取定的坐標(biāo)系中,如果曲線上任意
2024-08-03 03:45
【總結(jié)】重慶市萬(wàn)州高級(jí)中學(xué)曾國(guó)榮§(二)高2020級(jí)數(shù)學(xué)教學(xué)課件2020/12/13重慶市萬(wàn)州高級(jí)中學(xué)曾國(guó)榮2?教學(xué)目的:?;?,進(jìn)而求出圓心和半徑;?程;?4.滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新、勇于探索.高2020
2024-11-06 19:12
【總結(jié)】課題:圓的標(biāo)準(zhǔn)方程教學(xué)目標(biāo):(1)回顧與分析確定圓的幾何要素,在直角坐標(biāo)系中,探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程。(2)培養(yǎng)運(yùn)用坐標(biāo)法研究幾何的能力,熟練運(yùn)用待定系數(shù)法求圓的方程。(3)通過(guò)實(shí)際問(wèn)題的學(xué)習(xí),知道理論來(lái)源于實(shí)際,又服務(wù)于實(shí)際的道理。(4)知道圓上的點(diǎn)與圓方程的解的關(guān)系,體會(huì)圓的“完美無(wú)缺”。教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程的推導(dǎo)與運(yùn)
2024-11-23 15:38
【總結(jié)】(一)圓的方程022?????FEyDxyx圓的一般方程:)04(22???FED其中222)()(rbyax????圓的標(biāo)準(zhǔn)方程:特點(diǎn):;項(xiàng)的系數(shù)相同且不為零和22)1(yx項(xiàng).沒(méi)有xy)2(一、復(fù)習(xí);內(nèi)在圓點(diǎn)rPCCP??)1(;上在圓點(diǎn)rPCCP??)2(.外在圓點(diǎn)rPCCP??)3((二)點(diǎn)與圓的
2024-08-02 10:07
【總結(jié)】ArxyO圓的標(biāo)準(zhǔn)方程生活中的圓探究:?jiǎn)栴}一:什么是圓?初中時(shí)我們是怎樣給圓下定義的?平面內(nèi)與定點(diǎn)距離等于定長(zhǎng)的點(diǎn)的集合(軌跡)是圓。問(wèn)題二:平面直角坐標(biāo)系中,如何確定一個(gè)圓?圓心:確定圓的位置半徑:確定圓的大小圓心是C(
2024-11-24 22:56
【總結(jié)】圓的切線方程yoxM(x0,y0)x·x0+y·y0=r2回顧已知學(xué)習(xí)新知知識(shí)鞏固練習(xí)已知圓過(guò)點(diǎn)A(2,-3)和B(-2,-5),若圓心在直線x-2y–3=0上,試求圓的方程。解法1:設(shè)所求圓的方程為:(x-a)2+(y-b)2=r2則
2024-08-03 15:23
【總結(jié)】第四章圓與方程圓的方程圓的標(biāo)準(zhǔn)方程問(wèn)題提出,兩點(diǎn)確定一條直線,一點(diǎn)和傾斜角也確定一條直線,那么在什么條件下可以確定一個(gè)圓呢?,圓也可以用一個(gè)方程來(lái)表示,怎樣建立圓的方程是我們需要探究的問(wèn)題.圓心和半徑知識(shí)探究一:圓的標(biāo)準(zhǔn)方程平面上到一個(gè)定點(diǎn)的距
2024-08-13 07:29
【總結(jié)】北師大版必修2圓的標(biāo)準(zhǔn)方程問(wèn)題:(1)求到點(diǎn)C(1,2)距離為2的點(diǎn)的軌跡方程.(x?1)2+(y?2)2=4(2)方程(x?1)2+(y?2)2=4表示的曲線是什么?以點(diǎn)C(1,2)為圓心,2為半徑的圓.:平面內(nèi)與定點(diǎn)
2024-10-19 14:17
【總結(jié)】圓的標(biāo)準(zhǔn)方程求曲線方程的一般步驟1:建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)(x,y)表示曲線上任意一點(diǎn)M的坐標(biāo);(建立坐標(biāo)系,設(shè)點(diǎn))2:寫(xiě)出適合條件P的點(diǎn)M的集合P={M|P(M)}3:用坐標(biāo)表示P(M),列出方程f(x,y)=0;(列式)4:化方程f(x,y)=0為最簡(jiǎn)形式;(化簡(jiǎn))5:證明化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都
2024-11-06 23:20
【總結(jié)】圓的參數(shù)方程即的函數(shù)都是縱坐標(biāo)、的橫坐標(biāo)點(diǎn)根據(jù)三角函數(shù)定義圓半徑為的坐標(biāo)為如果點(diǎn),,,,),,(0??yxPOPPryxP????sincosryrx??①并且對(duì)于的每一個(gè)允許值,由方程組①所確定的點(diǎn)P(x,y),都在圓O上.?5?
2024-08-02 16:11
【總結(jié)】教學(xué)過(guò)程:教學(xué)重點(diǎn)與難點(diǎn):教學(xué)重點(diǎn):掌握?qǐng)A的標(biāo)準(zhǔn)方程和一般方程.教學(xué)難點(diǎn):能根據(jù)所給出條件求出圓的方程.教學(xué)方法:?jiǎn)l(fā)式為主.教學(xué)手段:多媒體輔助教學(xué).教學(xué)目標(biāo):1、知道圓的定義,會(huì)導(dǎo)出并掌握?qǐng)A的標(biāo)準(zhǔn)方程和一般方程,會(huì)根據(jù)圓的一般方程求出圓心和半徑.2、能根據(jù)所給出條件求出圓的方程.3、掌握
2024-08-02 07:14
【總結(jié)】圓的一般方程復(fù)習(xí)引入圓的標(biāo)準(zhǔn)方程:(x-a)2+(y-b)2=r2圓心C(a,b),半徑r把(x-a)2+(y-b)2=r2展開(kāi),會(huì)得到怎樣的式子?-22222202=-++-+rbabyaxyx我們能否將以上形式寫(xiě)得更簡(jiǎn)單一點(diǎn)呢?由于a,b,r均為常數(shù)Fr
2024-11-16 21:20
【總結(jié)】高中數(shù)學(xué)人教A版必修2第四章圓與方程“四步導(dǎo)學(xué)”法之§(1)高一數(shù)學(xué)組目標(biāo)解讀ArxyO;掌握?qǐng)A的標(biāo)準(zhǔn)方程(重點(diǎn)).(重難點(diǎn)).在一個(gè)平面內(nèi),線段CP繞它固定的一個(gè)端點(diǎn)C旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)P所形成的圖形叫做圓。2、我們知道,在
2024-08-02 06:58
【總結(jié)】圓的一般方程O(píng)CM(x,y)x2+y2+Dx+Ey+F=0復(fù)習(xí)回顧:圓的標(biāo)準(zhǔn)方程?????222rbyax????將標(biāo)準(zhǔn)方程展開(kāi)會(huì)得到怎樣的式子呢?其中,圓心的坐標(biāo)是??ba,r02222222???????rbabyaxyx其中a,b,r均為常數(shù)我們能否將以上形式寫(xiě)得更簡(jiǎn)單一點(diǎn)呢?思
2024-08-02 06:59