【總結】3.1兩角和與差的三角公式習題課例1將下列sincosaxbx?化成sin()Ax??的形式(1)3sin3cosxx?;(2)3sincosxx?;(3)sin3cosxx??;(4)sin3cosxx??;(5)sincosxx?;(6)sincosxx?
2024-11-27 23:35
【總結】學習目標1、理解以兩角差的余弦公式為基礎,推導兩角和、差正弦的方法。2、體會三角恒等變換特點的過程,理解推導過程,掌握公式的應用。學習過程1、兩角和的余弦公式:2、兩角差的余弦公式:
2024-11-27 23:36
【總結】學習目標掌握用向量方法建立兩角差的余弦公式.通過簡單運用,使學生初步理解公式的結構及其功能,為建立其它和(差)公式打好基礎.學習過程一、課前準備自學過程:1、cos()????,2、cos()????
2024-11-27 23:39
【總結】雙基達標?限時20分鐘?1.計算cos80°cos20°+sin80°·sin20°的值為().A.22B.32D.-22答案C2.設α∈??????0,π2,若sinα=35,則2cos
2024-11-28 01:12
【總結】教學設計課題:《任意角的三角函數(shù)》教學目標:;;;、余弦函數(shù)、正切函數(shù)的定義域;,會求角α的各三角函數(shù)值。教學重點:1.任意角的三角函數(shù)的定義;2.運用任意角的三角函數(shù)的定義求函數(shù)值。教學難點:理解角的三角函數(shù)值與角終邊上點的位置無關;教學方法:1
2024-11-18 16:46
【總結】一、選擇題1.化簡:sin21°cos81°-cos21°sin81°=()B.-12C.32D.-32【解析】sin21°cos81°-cos21°sin81°=sin(21°-81°)=-s
【總結】一、選擇題1.cos45°cos15°+sin15°sin45°的值為()A.-32B.32C.22D.-22【解析】cos45°cos15°+sin15°sin45°=cos(45°-15°
【總結】余弦函數(shù)、正切函數(shù)的圖象與性質(zhì)一、教學目標1、知識目標(1)理解余弦函數(shù)的圖象與性質(zhì)(2)理解正切函數(shù)的圖象與性質(zhì)2、能力目標(1)引導學生自己由所學的知識推導未知的知識,根據(jù)正弦函數(shù)的圖象、誘導公式推導出余弦函數(shù)的圖象,并自己總結其性質(zhì)(2)引導學生仿照對正弦函數(shù)的研究,自己利用三角函數(shù)線得出正切函數(shù)
2024-11-18 16:45
【總結】《兩角和與差的余弦》說課稿一、教材分析:㈠、地位和作用:兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,是正弦線、余弦線和誘導公式等知識的延伸,是后繼內(nèi)容二倍角公式、和差化積、積化和差公式的知識基礎,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有重要的支撐作用。本課時主要講授平面內(nèi)兩點間距離公式、兩角和與差的余弦
2024-12-08 01:49
【總結】兩角和與差的正切公式 一、教學目標設計 6、熟悉兩角和與差正切公式的推導,知道公式成立的條件,理解公式的形式 特征. (2)初步了解公式的作用,能夠正確運用公式及其常用變形進行計算、化簡、 ...
2025-04-03 03:45
【總結】兩角和與差的余弦公式教學設計【教學三維目標】:理解兩角和與差的余弦公式的推導過程,熟記兩角和與差的余弦公式,運用兩角和與差的余弦公式,解決相關數(shù)學問題;培養(yǎng)學生嚴密而準確的數(shù)學表達能力;培養(yǎng)學生逆向思維和發(fā)散思維能力;2過程與方法目標:通過對公式的推導提高學生研究問題、分析問題、解決問題能力
2024-11-19 11:24
【總結】誘導公式(一)一、學習目標1.通過本節(jié)內(nèi)容的教學,使學生掌握?+?k2,-?角的正弦、余弦和正切的誘導公式及其探求思路,并能正確地運用這些公式進行任意角的正弦、余弦和正切值的求解、簡單三角函數(shù)式的化簡與三角恒等式的證明;2.通過公式的應用,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力;二、教學重點、
【總結】誘導公式(三)一、學習目標1.通過本節(jié)內(nèi)容的教學,使學生進一步理解和掌握四組正弦、余弦和正切的誘導公式,并能正確地運用這些公式進行任意角的正弦、余弦和正切值的求解、簡單三角函數(shù)式的化簡與三角恒等式的證明;2.通過公式的應用,培養(yǎng)學生的化歸思想,運算推理能力、分析問題和解決問題的能力;二、教學重點、難點重點:四組誘導公式及這四組誘導公式
【總結】《兩角和與差的正切》課教學設計 一、設計說明 從兩角和與差的正余弦公式導入兩角和與差的正切公式,培養(yǎng)學生的觀察、分析、類比、聯(lián)想的能力,從公式的內(nèi)在聯(lián)系及問題的解決過程中發(fā)展學生的正向、逆向思...
2025-04-03 03:16
【總結】兩角差的余弦公式教學目的:經(jīng)歷用向量數(shù)量積推導出兩角差的余弦公式的過程,進一步體會向量方法的作用;掌握兩角差的余弦公式的結構特征,并會應用。教學重點:兩角差的余弦公式結構及其應用教學難點:兩角差的余弦公式的推導。教學過程一、新課引入課本P136的問題二、新課[1、問題的提出co
2024-12-08 22:40