freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

measurementsystemsanalysis(測量系統(tǒng)分析)(編輯修改稿)

2025-01-28 21:48 本頁面
 

【文章內容簡介】 Example of Type 1 Gage Study 1 Open the worksheet . 2 Choose Stat Quality Tools Gage Study Type 1 Gage Study. 3 In Measurement data, enter Diameter. 4 In Reference, type . 5 Under Tolerance, choose Upper spec lower spec and type . Click OK. Example of Type 1 Gage Study 4 64 13 63 12 62 11 61 1611 2 . 3 1 01 2 . 3 0 51 2 . 3 0 01 2 . 2 9 5O b s e r v a t i o nDiameter R e f R e f + 0 . 1 0 * T o lR e f 0 . 1 0 * T o lR e f e r e n c e 1 2 . 3 0 5M e a n 1 2 . 3 0 2 6 9S t D e v 0 . 0 0 3 6 3 16 * S t D e v ( S V ) 0 . 0 2 1 7 8 3T o l e r a n c e ( T o l ) 0 . 0 5B a s i c S t a t i s t i c sB i a s 0 . 0 0 2 3 1T 4 . 5 0 6 8 9 2P V a l u e 0 . 0 0 0( T e s t B i a s = 0 )B i a sC g 0 . 4 6C g k 0 . 2 5C a p a b i l i t y% V a r ( R e p e a t a b i l i t y ) 4 3 . 5 7 %% V a r ( R e p e a t a b i l i t y a n d B i a s ) 8 1 . 1 0 %G a g e n a m e : D a t e o f s t u d y : R e p o r t e d b y : T o l e r a n c e : 0 . 0 5M i s c : R u n C h a r t o f D i a m e t e rT y p e 1 G a g e S t u d y f o r D i a m e t e r1)分析結果顯示偏倚量是 , P值等于 0說明測量系統(tǒng)的偏倚是統(tǒng)計顯著的 同樣從圖上可以看出大部分的測量數據都低于標準值。 2) Cg是公差和測量變異進行比較, CgK是公差和測量變異及偏倚量兩者進行比較 Cg和 CgK越大,表示測量系統(tǒng)的變異相對公差來說越小。通常 Cg和 CgK要求大于 3) %Var (repeatability) 由于 Cg來確定, %Var (repeatability and bias)由 Cgk來確定 . %Var值小表示 測量值變異相對公差而言小 .能力指標 % Var = 15%. Presentation 41 Attribute Measurement System Studies 離散型數據 測量系統(tǒng)研究 Purpose Of Attribute MSA ? Assess standards against customers’ requirements 對顧客要求的標準進行評定 ? Determine if all appraisers use the same criteria 確定所有的檢驗者使用相同的標準 ? Quantify repeatability and reproducibility of operators 量化操作者的重復性與再現性 ? Identify how well measurement system conforms to a “known master” 確定測量系統(tǒng)對已知標準的符合程度 ? Discover areas where: 發(fā)現一些領域: – Training is needed 需要培訓 – Procedures are lacking 缺少規(guī)程 – Standards are not defined 標準定義不清晰 Sample Rule ? 30 samples at least, 3 appraisers and twice tests 需要 3個測量者,最少 30個樣本與每個樣本 2次測試 ? 40%~45% for pass samples 40%~45%的好樣本 ? 40%~45% for fail samples 40%~45%的壞樣本 ? 10% for equivocal samples (if possible) 10%的邊緣樣本 ? The criteria for samples should be determined in advance. 樣本的好壞標準需提前確定下來 ? Make sure the randomization for the test 保證樣本測試的隨機性 Attribute MSA Excel Method ? Allows for RR analysis within and between appraisers 可以分析評估者之間的 RR ? Test for effectiveness against standard 對標準判斷的有效性 ? Limited to nominal data at two levels 只能用于兩個水平的名義性數據 DATE: 1/4/2023 Attribute Legend 5 (used in putations) NAME: Acme Employee 1 Pass PRODUCT: Widgets 2 Fail BUSINESS: Earth Products Known Population Sample Attribute Try 1 Try 2 Try 1 Try 2 Try 1 Try 2 1 Pass Pass Pass Pass Pass Pass Pass 2 Pass Pass Pass Pass Pass Pass Pass 3 Pass Pass Pass Pass Pass Pass Pass 4 Pass Pass Pass Pass Pass Fail Pass 5 Fail Fail Fail Fail Fail Pass Fail 6 Fail Pass Pass Pass Pass Pass Pass 7 Pass Pass Pass Pass Pass Pass Pass 8 Pass Pass Pass Pass Pass Pass Pass 9 Fail Fail Fail Fail Fail Fail Fail 10 Pass Pass Pass Pass Pass Pass Pass 11 Pass Pass Pass Pass Pass Pass Pass 12 Pass Pass Pass Pass Pass Pass Pass 13 Pass Pass Pass Pass Pass Pass Pass 14 Pass Pass Pass Pass Pass Fail Pass 15 Fail Fail Fail Fail Fail Pass Fail 16 Pass Pass Pass Pass Pass Pass Pass 17 Pass Pass Pass Pass Pass Pass Pass 18 Pass Pass Pass Pass Pass Pass Pass 19 Fail Fail Fail Fail Fail Fail Fail 20 Pass Pass Pass Pass Pass Pass Pass 21 Pass Pass Pass Pass Pass Pass Pass 22 Pass Fail Fail Pass Pass Pass Pass 23 Pass Pass Pass Pass Pass Pass Pass 24 Pass Pass Pass Pass Pass Fail Pass 25 Fail Fail Fail Fail Fail Fail Fail 26 Pass Pass Pass Pass Pass Pass Pass 27 Pass Pass Pass Pass Pass Pass Pass 28 Pass Pass Pass Pass Pass Pass Pass 29 Fail Fail Fail Fail Fail Fail Fail 30 Pass Pass Pass Pass Pass Pass Pass Operator 1 Operator 2 Operator 3 Attribute MSA Example Open file Scoring Example ? 100% is target for all scores – 100% indicates training required ? % Appraiser score = repeatability ? Screen % Effectiveness Score = reproducibility ? % Score vs. Attribute – individual error against a known population ? Screen % Effective vs. Attribute – Total error against a known population % % % % % % SCREEN % EFFECTIVE SCORE % SCREEN % EFFECTIVE SCORE vs. ATTRIBUTE % % APPRAISER SCORE % SCORE VS. ATTRIBUTE Statistical Report Statistical Report Statistical Report Cont MINITAB Method Data Entry ? Same data as
點擊復制文檔內容
公司管理相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1