【總結】奇偶性第二課時函數奇偶性的性質問題提出、偶函數的定義分別是什么?、圖象分別有何特征??知識探究(一)思考1:是否存在函數f(x)既是奇函數又是偶函數?若存在,這樣的函數有何特征?f(x)=0思考2:一個函數就奇偶性而言有哪幾種可能情形?思考3:若f(x)是定
2025-11-02 09:02
2025-10-31 09:22
【總結】函數的奇偶性南京市三十九中學xyO如何用數學語言表述函數圖象關于y軸對稱呢?y=f(x)函數圖象關于y軸對稱.1xyOyxOxO1yxyOy=f(x)A(x0,f(x0))點A關于y軸的對稱點A’的坐標是_
2025-10-25 17:55
【總結】第一篇:《函數的奇偶性》教案 《函數的奇偶性》 一、教材分析 1.教材所處的地位和作用 “奇偶性”是人教A版第一章“集合與函數概念”的第3節(jié)“函數的基本性質”的第2小節(jié)。 奇偶性是函數的一條...
2025-10-19 15:46
【總結】第一篇:函數的奇偶性說課稿 函數的奇偶性(說課稿) 同心縣回民中學馬萬 各位老師,大家好!今天我說課的課題是高中數學人教A版必修一第一章第三節(jié)”函數的基本性質”中的“函數的奇偶性”,下面我將從教...
2025-10-19 16:52
【總結】制作人:吳智祥老師引入課題:f(x)=x2,求f(0),f(-1),f(1),f(-2),f(2),及f(-x),并畫出它的圖象。解:f(-2)=(-2)2=4f(2)=4f(0)=0,f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x2f(x)=x3,求f(0),f
2025-11-01 01:05
2025-08-01 17:15
【總結】曹家大院某院晉祠鼓樓晉祠碩亭太谷民居門墩石獅子請你欣賞xyoxyo2)(xxf?xxf?)(觀察下列兩個函數圖象并思考以下問題:(1)這兩個函數圖象有什么共同特征嗎?(2)相應的兩個函數值對應表是如何體現這些特征的?
2025-11-13 01:56
【總結】函數的單調性和奇偶性(一)閱讀課本P58-P59,回答下列問題1、增函數,減函數的定義;2、單調性,單調區(qū)間的定義.3、函數圖象如下圖,說出單調區(qū)間及其單調性.xy練習一1、求下列函數的單調區(qū)間(1)f(x)=x-1;(2)f(x)=-2x+3;(3)f(x)=2x2-x+2(4)f(x)=-x2-
2025-08-15 20:29
【總結】xy0觀察下圖,思考并討論以下問題:(1)這兩個函數圖象有什么共同特征嗎?(2)相應的兩個函數值對應表是如何體現這些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)f(-2)=2=f(2)f(-1)=1=f(1)f(x)=x2f(x)=|x|
2025-11-12 02:08
【總結】函數的奇偶性y=x2-xx當x1=1,x2=--1時,f(-1)=f(1)當x1=2,x2=--2時,f(-2)=f(2)對任意x,f(-x)=f(x)xy1?偶函數定義:如果對于函數定義域內的任意一個x,都有f(-x)=f(x)。那么f(x)就叫偶函數。奇函數定義:如果對于
2025-11-09 13:34
【總結】xy0觀察下圖,思考并討論以下問題:(1)這兩個函數圖象有什么共同特征嗎?(2)相應的兩個函數值對應表是如何體現這些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)f(-2)=2=f(2)f(-1)=1=f(1)f(x)=x2f(x)
2025-11-08 07:49
2025-10-28 20:13
【總結】f(x)=x2,求f(-2),f(2),f(-1),f(1),及f(-x),并畫出它的圖象。解:f(-2)=(-2)2=4f(2)=4f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x2f(-2)=f(2)f(-1)=f(1)f(-x)=f(x)-xxf(-x)f(x)xy
2025-08-16 01:30
【總結】函數的奇偶性一、對稱區(qū)間(關于原點對稱)[a,b]關于原點的對稱區(qū)間為[-b,-a](-∞,0)關于原點的對稱區(qū)間為(0,+∞)[-1,1]關于原點的對稱區(qū)間為[-1,1]二、奇函數與偶函數(一)奇函數的定義:對于任意函數f(x)在其對稱區(qū)間(關于原點對稱)內,對于x∈A,都有f(-x)=-f(x),則f(x)為奇函數。(二)偶函數的定義:對于任意函數f(x)
2025-04-16 12:09