【總結(jié)】奇偶性觀察下面三張圖片,它們有什么共同特征?觀察函數(shù)f(x)=x2和f(x)=|x|圖象并思考:(1)這兩個函數(shù)圖象有什么共同特征?(2)填函數(shù)值對應(yīng)表,它們是如何體現(xiàn)這些特征的?x-3-2-10123f(x)=x2x-3-2-10123f(x)=|x|9410
2024-11-21 02:07
【總結(jié)】第一篇:高中數(shù)學:《函數(shù)的奇偶性》教案(新人教B必修1) 函數(shù)的奇偶性學案 【預(yù)習要點及要求】; ;; ;。【知識再現(xiàn)】 : 2中心對稱圖形:【概念探究】 1、畫出函數(shù)f(x)=x,與g...
2024-10-14 05:48
【總結(jié)】第十二課時函數(shù)的單調(diào)性和奇偶性【學習導航】學習要求:1、熟練掌握函數(shù)單調(diào)性,并理解復(fù)合函數(shù)的單調(diào)性問題。2、熟練掌握函數(shù)奇偶性及其應(yīng)用。3、學會對函數(shù)單調(diào)性,奇偶性的綜合應(yīng)用?!揪浞独恳?、利用函數(shù)單調(diào)性求函數(shù)最值例1、已知函數(shù)y=f(x)對任意x,y∈R均為f(x)+f(y)=f(x+y),且當x0時,f(x)0,f(1)=-.(1
2025-06-07 23:22
【總結(jié)】?本節(jié)重點:函數(shù)基本知識小結(jié).?本節(jié)難點:函數(shù)性質(zhì)的應(yīng)用.1.一次函數(shù)f(x)=kx+b(k≠0),當k0時為增函數(shù),k0時為減函數(shù),在閉區(qū)間[m,n]上的兩端點取得最值;二次函數(shù)f(x)=ax2+bx+c(a≠0).a(chǎn)&g
2024-11-09 09:22
【總結(jié)】2020年高中數(shù)學函數(shù)的奇偶性學案新人教B版必修1一、三維目標:知識與技能:使學生理解奇函數(shù)、偶函數(shù)的概念,學會運用定義判斷函數(shù)的奇偶性。過程與方法:通過設(shè)置問題情境培養(yǎng)學生判斷、推斷的能力。情感態(tài)度與價值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學生的情操.通過組織學生分組討論,培養(yǎng)學生主動交流的合作精神,使學生學
2024-11-19 19:27
【總結(jié)】函數(shù)的奇偶性y=x2-xx當x1=1,x2=--1時,f(-1)=f(1)當x1=2,x2=--2時,f(-2)=f(2)對任意x,f(-x)=f(x)xy1?偶函數(shù)定義:如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x)。那么f(x)就叫偶函數(shù)。奇函數(shù)定義:如果對于
2024-11-17 15:35
【總結(jié)】xy0觀察下圖,思考并討論以下問題:(1)這兩個函數(shù)圖象有什么共同特征嗎?(2)相應(yīng)的兩個函數(shù)值對應(yīng)表是如何體現(xiàn)這些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)f(-2)=2=f(2)f(-1)=1=f(1)f(x)=x2f(x)=|x|
2024-11-17 22:49
【總結(jié)】函數(shù)的基本性質(zhì)——奇偶性1.在初中學習的軸對稱圖形和中心對稱圖形的定義是什么?復(fù)習回顧2.請分別畫出函數(shù)f(x)=x3與g(x)=x2的圖象.1.在初中學習的軸對稱圖形和中心對稱圖形的定義是什么?復(fù)習回顧1.奇函數(shù)、偶函數(shù)的定義講授新課1.奇函數(shù)、偶函數(shù)的定義奇函數(shù):
2024-12-07 16:39
2024-11-19 23:24
【總結(jié)】引入課題:f(x)=x2,求f(0),f(-1),f(1),f(-2),f(2),及f(-x),并畫出它的圖象。解:f(-2)=(-2)2=4f(2)=4f(0)=0,f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x2f(x)=x3,求f(0),f(-1),f(1)f(-2),f
2024-11-09 05:07
【總結(jié)】函數(shù)的奇偶性南京市三十九中學xyO如何用數(shù)學語言表述函數(shù)圖象關(guān)于y軸對稱呢?y=f(x)函數(shù)圖象關(guān)于y軸對稱.1xyOyxOxO1yxyOy=f(x)A(x0,f(x0))點A關(guān)于y軸的對稱點A’的坐標是_
2024-11-17 15:06
【總結(jié)】奇偶性第二課時函數(shù)奇偶性的性質(zhì)問題提出、偶函數(shù)的定義分別是什么?、圖象分別有何特征??知識探究(一)思考1:是否存在函數(shù)f(x)既是奇函數(shù)又是偶函數(shù)?若存在,這樣的函數(shù)有何特征?f(x)=0思考2:一個函數(shù)就奇偶性而言有哪幾種可能情形?思考3:若f(x)是定
2024-11-11 09:02
【總結(jié)】第二章函數(shù)(奇偶性)1.已知函數(shù)f(x)=ax2+bx+c(a≠0)是偶函數(shù),那么g(x)=ax3+bx2+cx( ?。 .奇函數(shù) B.偶函數(shù) C.既奇又偶函數(shù) D.非奇非偶函數(shù)2.已知函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),且其定義域為[a-1,2a],則( ) A.,b=0 B.a(chǎn)=-1,b=0 C.a(chǎn)=1,b=0 D.
2025-04-04 05:11
【總結(jié)】學科:數(shù)學課題:函數(shù)的奇偶性教學目標(三維融通表述):通過具體實例學生理解函數(shù)的奇偶性概念及其幾何意義,學會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì),學會運用定義判斷函數(shù)奇偶性。通過學習,學生進一步體會數(shù)形結(jié)合的思想,感受從特殊到一般的思維過程;通過函數(shù)圖象的描繪及奇偶性的揭示,進一步體會數(shù)學的對稱美,和諧美教學重點:函數(shù)奇偶性的定義和幾
2024-12-05 01:51