【總結(jié)】無理不等式的解法基本概念1、無理不等式:2、無理不等式的類型:根號下含有未知數(shù)的不等式。0)()()4()()()3()()()2()()()1(?????xgxfxgxfxgxfxgxf根式不等式的解法-例1解不等式0343????xx解:原不等式可化為
2024-11-03 22:31
【總結(jié)】[鍵入文字]石門高級中學(lah)抽象不等式的解答方法一、利用單調(diào)性、奇偶性等函數(shù)的性質(zhì)模型1:在區(qū)間上單調(diào)遞增,若,則。模型2:奇函數(shù)在區(qū)間上單調(diào)遞增,若,則可得,。例題:已知函數(shù),則的解集為______.解析:為奇函數(shù),求導(dǎo)得,在上單調(diào)遞增,由得,,,解得,,或??偨Y(jié):1、將目標寫成具體不等式,則得到超越不等式,無法解答。沒
2025-06-22 16:46
【總結(jié)】不等式解法舉例(1)含絕對值的一元一次、一元二次不等式(組)的解法基本絕對值不等式的解集?不等式︱x︱0)的解集是{x︱-aa(a0)的解集是{x︱xa或x-a}.?嘗試:(1)︱x︱1
2024-10-17 03:43
【總結(jié)】一、簡單的一元二次不等式的解法:(1);(2); (3); (4).={x|x2-3x-28≤0},N={x2-x-60},則M∩N為( ?。。粒鴟-4≤x-2或3<x≤7} B.{x|-4<x≤-2或3≤x<7}C.{x|x≤-2或x>3} D.{x|x<-2或x
2025-06-26 02:12
【總結(jié)】絕對值不等式課堂練習:解不等式|3x-4|≤19類型一:或a0型延伸:例1解不等式|x2-5x+5|1?解:原不等式可轉(zhuǎn)化為-1x2-5x+51
2024-11-09 12:20
【總結(jié)】數(shù)學解題絕招1一、方法引入:1.數(shù)形結(jié)合法:(1)若f(x)=ax+b,x∈[α,β],則:f(x)0恒成立f(x)0恒成立
2024-08-04 12:19
【總結(jié)】上海市虹口高級中學韓璽一、教學內(nèi)容分析,所以需牢固掌握.二、教學目標設(shè)計1、掌握簡單的分式不等式的解法.2、體會化歸、等價轉(zhuǎn)換的數(shù)學思想方法.三、教學重點及難點重點簡單的分式不等式的解法.難點不等式的同解變形.四、教學過程設(shè)計一、分式不等式的解法1、引入某地鐵上,甲乙兩人為了趕乘地鐵,分別從樓梯和運行中的自動扶梯上樓(樓梯和自動扶梯
2025-04-16 22:22
【總結(jié)】含參數(shù)的一元二次不等式的解法含參數(shù)的一元二次不等式的解法與具體的一元二次不等式的解法在本質(zhì)上是一致的,這類不等式可從分析兩個根的大小及二次系數(shù)的正負入手去解答,但遺憾的是這類問題始終成為絕大多數(shù)學生學習的難點,此現(xiàn)象出現(xiàn)的根本原因是不清楚該如何對參數(shù)進行討論,而參數(shù)的討論實際上就是參數(shù)的分類,而參數(shù)該如何進行分類?下面我們通過幾個例子體會一下。一.二次項系數(shù)為常數(shù)例1、解關(guān)于x的不
2025-06-25 16:58
【總結(jié)】1、一元二次不等式的解法一化:化二次項前的系數(shù)為正數(shù).二判:判斷對應(yīng)方程的根.三求:求對應(yīng)方程的根.四畫:畫出對應(yīng)函數(shù)的圖象.五解集:根據(jù)圖象寫出不等式的解集.規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊.2、高次不等式的解法:穿根法.分解因式,把根標在數(shù)軸上,從右上方依次往下穿(奇穿偶切),結(jié)合原式不等號的方向,寫出不等式的解集.3、分式不等式的解法
2025-06-26 07:14
【總結(jié)】高中數(shù)學知識專項系列講座含參數(shù)不等式的解法一、含參數(shù)不等式存在解的問題如果不等式(或)的解集是D,的某個取值范圍是E,且DE,則稱不等式在E內(nèi)存在解(或稱有解,有意義).例1.(1)不等式的解集非空,求的取值范圍;(2)不等式的解集為空集,求的取值范圍.(分析:解集非空即指有解,有意義,解集為即指無解(恒不成立),否定之后為恒成立,本題實質(zhì)上是成立與恒成立問題)解
2025-06-25 17:15
【總結(jié)】無理不等式的解法基本概念1、無理不等式:2、無理不等式的類型:根號下含有未知數(shù)的不等式。根式不等式的解法-------例1解不等式解:原不等式可化為根據(jù)根式的意義及不等式的性質(zhì),得解這個不等式組,得所以,原不等式的解集為⊙⊙●根式不等式的解法-------類型(1)
2024-11-10 22:31
【總結(jié)】不等式的證明與解法(復(fù)習課)1、比較法(1)比較法證明不等式的步驟作差---變形---判斷符號----得出結(jié)論(2)比較法經(jīng)常證明什么樣的不等式高次整式多項式、所證不等式兩邊有相同或局部相同的部分(3)作差之后變形的思維完全平方、因式積一、不
2024-11-06 21:52
【總結(jié)】 一元二次不等式一、知識導(dǎo)學1.一元一次不等式與一次函數(shù)的關(guān)系對于不等式axb,(1)當a0時,解為___________;(2)當a<0時,解為____________(3)當a=0,b≥0時___________;當a=0,b<0時,解為_______________.①作出的圖像,觀察>0,=0,<0的解與圖像的關(guān)系>0的解集表
2025-03-24 23:37
【總結(jié)】第一講不等式解法一、含絕對值的不等式的解法不等式解集或把看成一個整體,化成,型不等式來求解[例題精講]例1.解關(guān)于x的不等式|x-2|0)型?!?4x-24,不等號各端加2,得-2x6?!嗖坏仁浇饧莧x|-2
2025-06-19 08:38
【總結(jié)】......不等式的解法三、解不等式1.解不等式問題的分類(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化為一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解無
2025-06-23 18:52