【總結(jié)】河南省泌陽(yáng)縣職業(yè)教育中心周祥松指數(shù)不等式的解法是利用指數(shù)函數(shù)的性質(zhì)化為同解的代數(shù)不等式);()();()(10);()();()(1)()()()()()()()(xgxfaaxgxfaa時(shí),axgxfaaxgxfaa時(shí),axgxfxgxfxgxf
2025-05-09 00:31
【總結(jié)】不等式的解法舉例(2)——高次不等式與分式不等式的解法.教學(xué)目的:掌握簡(jiǎn)單高次不等式與分式不等式的解法.教學(xué)重點(diǎn):把四類(lèi)分式不等式轉(zhuǎn)化為整式不等式來(lái)解,用轉(zhuǎn)化法、列表法與標(biāo)根法求解分式、高次不等式:整理→標(biāo)根→畫(huà)線→選解教學(xué)難點(diǎn):1.分式不等式轉(zhuǎn)化為整式不等式來(lái)解,進(jìn)而化歸到一元一次、一元二次不等式來(lái)解. 2.帶
2025-06-23 23:35
【總結(jié)】教學(xué)案例§1.4含絕對(duì)值的不等式解法學(xué)校:織金二中組別:數(shù)學(xué)組姓名:田茂松教學(xué)目標(biāo):(一)知識(shí)目標(biāo)(認(rèn)知目標(biāo))1、理解并會(huì)求的解集;2、掌握的解法.(二)能力目標(biāo)1、通過(guò)不等式的求解,加強(qiáng)學(xué)生的運(yùn)算能力;2、培養(yǎng)學(xué)生數(shù)形結(jié)合、整體代換、等價(jià)轉(zhuǎn)化等的思想.(三)情感目標(biāo)1、感悟形與數(shù)不同的數(shù)學(xué)形態(tài)間的和諧同一美;2、培
2025-04-17 00:12
【總結(jié)】不等式的解法(一)一、基礎(chǔ)知識(shí)1、一元一次不等式的解法ax>b或ax<b2、絕對(duì)值不等式|x|>a(a>0)x<-a或x>a|x|<a(a>0)-a<x<a
2024-11-06 21:52
【總結(jié)】§復(fù)習(xí)回顧:.00bcaccbabcaccbacbcaba??????????,那么,如果;,那么,如果;,那么如果2.絕對(duì)值的意義:??????????.0000時(shí),當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)xxxxxx1.不等式的性質(zhì):?
2024-08-03 13:30
【總結(jié)】不等式的解法(二)1、一元一次不等式的解法ax>b或ax<b2、絕對(duì)值不等式|x|>a(a>0)x<-a或x>a|x|<a(a>0)-a<x<a
2024-11-06 18:13
【總結(jié)】常見(jiàn)不等式的解法一、分式不等式例1、解不等式:解:方法一:由2231???xx2231???xx整理得:02355???xx02231????xx??????????????023055)2(023055(1)xx或xx不等式
2024-08-14 06:28
【總結(jié)】其他不等式的解法(1)格致中學(xué)蔡青—分式不等式的解法1、分式方程的定義:分母中含有未知數(shù)的方程2、分式方程的解法:1)去分母轉(zhuǎn)化為整式方程2)解整式方程3)驗(yàn)根1、分式不等式定義:分母中含有未知數(shù)的不等式主要研究形如
2024-08-04 20:19
【總結(jié)】第一輪復(fù)習(xí):不等式——解分式不等式秭歸縣屈原高中張鴻斌解分式不等式的關(guān)鍵就是如何等價(jià)轉(zhuǎn)化(化歸)所給不等式!復(fù)習(xí)指導(dǎo)例1:解不等式所以原不等式的解集為:???+?--???+
2024-11-09 06:39
【總結(jié)】
2024-11-12 16:44
【總結(jié)】含絕對(duì)值的不等式的解法一、基本解法與思想解含絕對(duì)值的不等式的基本思想是等價(jià)轉(zhuǎn)化,即采用正確的方法去掉絕對(duì)值符號(hào)轉(zhuǎn)化為不含絕對(duì)值的不等式來(lái)解,常用的方法有公式法、定義法、平方法。(一)、公式法:即利用與的解集求解。主要知識(shí): 1、絕對(duì)值的幾何意義:是指數(shù)軸上點(diǎn)到原點(diǎn)的距離;是指數(shù)軸上,兩點(diǎn)間的距離.。2、與型的不等式的解法。當(dāng)時(shí),不等式的解集是不等式的解集是
2025-06-19 08:29
【總結(jié)】不等式的解法1.一元二次不等式的解法(1)含有未知數(shù)的最高次數(shù)是二次的一元不等式叫做一元二次不等式.(2)一元二次不等式的解法(如下表所示)設(shè)a>0,x1,x2是一元二次方程ax2+bx+c=0的兩實(shí)根,且x1<x2(3)對(duì)于一元二次不等式的解法需注意:①≥0(a<b)的解集為:{x|x≤a或x>b};≤0(a<b)的解集為:{x|a≤x<b}.②
2025-04-16 23:40
【總結(jié)】1、一元二次不等式的解法一化:化二次項(xiàng)前的系數(shù)為正數(shù).二判:判斷對(duì)應(yīng)方程的根.三求:求對(duì)應(yīng)方程的根.四畫(huà):畫(huà)出對(duì)應(yīng)函數(shù)的圖象.五解集:根據(jù)圖象寫(xiě)出不等式的解集.規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊.2、高次不等式的解法:穿根法.分解因式,把根標(biāo)在數(shù)軸上,從右上方依次往下穿(奇穿偶切),結(jié)合原式不等號(hào)的方向,寫(xiě)出不等式的解集.3、分式不等式的解法
2025-06-26 07:14
【總結(jié)】1關(guān)于含參數(shù)(單參)的一元二次不等式的解法探究含參數(shù)的一元二次不等式的解法與具體的一元二次不等式的解法在本質(zhì)上是一致的,這類(lèi)不等式可從分析兩個(gè)根的大小及二次系數(shù)的正負(fù)入手去解答,但遺憾的是這類(lèi)問(wèn)題始終成為絕大多數(shù)學(xué)生學(xué)習(xí)的難點(diǎn),此現(xiàn)象出現(xiàn)的根本原因是學(xué)生不清楚該如何對(duì)參數(shù)進(jìn)行討論,筆者認(rèn)為這層“紙”捅破了,問(wèn)題自然得到了很好的解決,在教學(xué)的過(guò)程中本人發(fā)現(xiàn)參數(shù)的討
2024-08-20 21:45
【總結(jié)】精品資源含絕對(duì)值不等式解法要點(diǎn)歸納解含絕對(duì)值符號(hào)的不等式的基本思想是去掉絕對(duì)值符號(hào),使不等式變?yōu)椴缓^對(duì)值符號(hào)的一般不等式,而后,其解法就與一般不等式相同.因此,掌握去掉絕對(duì)值符號(hào)的方法和途徑是解題關(guān)鍵.一、含有絕對(duì)值不等式的幾種去掉絕對(duì)值符號(hào)的常用方法去掉絕對(duì)值符號(hào)的方法有很多,其中常用的方法有:1.定義法去掉絕對(duì)值符號(hào)根據(jù)實(shí)數(shù)絕對(duì)的意義,即|x|=,有:|
2025-06-25 21:31