【總結】課題:一元二次不等式的解法一元一次函數(shù)一元二次函數(shù)一元一次函數(shù)一元一次方程一元一次不等式它們之間有怎樣的聯(lián)系?請同學們解決如下問題:?(1)解方程2x-7=0?(2)作出函數(shù)y=2x-7的圖像?(3)解不等式2x-70請看下表:“三個一次”的聯(lián)
2024-10-19 08:19
【總結】一不等式的解法1含絕對值不等式的解法(關鍵是去掉絕對值)利用絕對值的定義:(零點分段法)利用絕對值的幾何意義:表示到原點的距離公式法:,與型的不等式的解法.2整式不等式的解法根軸法(零點分段法)1)化簡(將不等式化為不等號右邊為0,左邊的最高次項系數(shù)為正);2)分解因式;3)標根(令每個因式為0,求出
2025-06-26 16:40
【總結】[鍵入文字]石門高級中學(lah)抽象不等式的解答方法一、利用單調性、奇偶性等函數(shù)的性質模型1:在區(qū)間上單調遞增,若,則。模型2:奇函數(shù)在區(qū)間上單調遞增,若,則可得,。例題:已知函數(shù),則的解集為______.解析:為奇函數(shù),求導得,在上單調遞增,由得,,,解得,,或。總結:1、將目標寫成具體不等式,則得到超越不等式,無法解答。沒
2025-06-22 16:46
【總結】一、簡單的一元二次不等式的解法:(1);(2); (3); (4).={x|x2-3x-28≤0},N={x2-x-60},則M∩N為( ?。。粒鴟-4≤x-2或3<x≤7} B.{x|-4<x≤-2或3≤x<7}C.{x|x≤-2或x>3} D.{x|x<-2或x
2025-06-26 02:12
【總結】不等式的解法舉例(2)——高次不等式與分式不等式的解法.教學目的:掌握簡單高次不等式與分式不等式的解法.教學重點:把四類分式不等式轉化為整式不等式來解,用轉化法、列表法與標根法求解分式、高次不等式:整理→標根→畫線→選解教學難點:1.分式不等式轉化為整式不等式來解,進而化歸到一元一次、一元二次不等式來解. 2.帶
2025-06-23 23:35
【總結】一、問題嘗試:1、解不等式(x-1)(x-2)0解集為{x︱x2或x0呢?先轉化為(x-1)(x-2)0解集同(1).點評:對于一元二次不等式
2024-08-24 20:29
【總結】§復習回顧:.00bcaccbabcaccbacbcaba??????????,那么,如果;,那么,如果;,那么如果2.絕對值的意義:??????????.0000時,當時,,當時,,當xxxxxx1.不等式的性質:?
2024-08-03 13:30
【總結】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質:推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-20 01:36
2024-08-02 19:51
【總結】不等式和不等式組錢旭東淮安市啟明外國語學校蘇科版義務教育課程標準實驗教科書九年級復習課回顧·知識一元一次不等式(組)的應用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質一元一次不等式和一元一次不等式組回顧·知識:含
2024-10-12 13:38
【總結】認識不等式授課教師李小波華東師大版七年級下冊你能決定嗎?問題:三年級四班有27名共青團員去忠山公園進行活動.公園票價是:每人5元;一次購票滿30張,每張票可少收1元.當團支部書記王小華準備好零錢到售票處買27張票時,有同學提議買30張票合算些.同學們議論紛紛,遲遲沒作決定.
2024-11-09 05:14
【總結】不等式的性質?學習目標:?.?.?.?一.復習?不等式的基本原理及含義?a-b0ab?a-b=0a=b?a-bab?四大作用:?(1)
2024-10-19 08:40
【總結】喬瑞霞蛟河三中:1.不等式,一元一次不等式2.不等式的解3.不等式的解集4.解一元一次不等式一.基本概念:?不等式的基本性質(3條):?1)不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向____.?2)不等式兩邊都乘以(或除以)同一個
2024-08-14 01:06
【總結】不等式的性質不等式不等式的證明不等式的解法應用不等式的性質互逆性—ab傳遞性—ab,bc可加性—ab推論移項法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2024-10-19 08:39
【總結】含參數(shù)的一元二次不等式的解法含參數(shù)的一元二次不等式的解法與具體的一元二次不等式的解法在本質上是一致的,這類不等式可從分析兩個根的大小及二次系數(shù)的正負入手去解答,但遺憾的是這類問題始終成為絕大多數(shù)學生學習的難點,此現(xiàn)象出現(xiàn)的根本原因是不清楚該如何對參數(shù)進行討論,而參數(shù)的討論實際上就是參數(shù)的分類,而參數(shù)該如何進行分類?下面我們通過幾個例子體會一下。一.二次項系數(shù)為常數(shù)例1、解關于x的不
2025-06-25 16:58