freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

納米二氧化鈦的制備與光催化性能研究畢業(yè)論文(編輯修改稿)

2025-07-25 17:03 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 活性大大的提高或增強(qiáng)。這就使得反應(yīng)能夠在較低的溫度下發(fā)生。 復(fù)合納米TiO2顆粒的制備過(guò)程溶劑熱法制備復(fù)合納米二氧化鈦的步驟具體如下:在溶劑(異丙醇,乙二醇,環(huán)己醇,甲醇,乙腈,正丙胺)中加入二乙烯三胺,攪拌5min,然后在所得溶液中加入鈦源(鈦酸四丁酯,鈦酸異丙酯),均勻攪拌5min;再將混合溶液加入到50mL反應(yīng)釜中,在200℃下反應(yīng)6h;將反應(yīng)釜取出冷卻至室溫,將得到的混濁液離心分離乳白色膠體顆粒。這樣將會(huì)得到各種不同形態(tài)的二氧化鈦顆粒。光催化實(shí)驗(yàn)二氧化鈦的制備過(guò)程如下:在50ml的乙腈中加入二乙烯三胺60ul,攪拌5min,將5ml鈦酸異丙酯溶解在上述溶液中,攪拌5min,將混合液加入到100ml的反應(yīng)釜中,在200℃下反應(yīng)12h, 將反應(yīng)釜取出冷卻至室溫,將得到的混濁液離心分離乳白色膠體顆粒。用無(wú)水乙醇超聲清洗2次。樣品分成三等份,取兩份分別在500度和700度高溫?zé)Y(jié)2小時(shí)。燒結(jié)樣品做光催化實(shí)驗(yàn)。 光催化實(shí)驗(yàn)反應(yīng)裝置及使用方法采用自制的光催化反應(yīng)器作為光催化反應(yīng)裝置,光源距反應(yīng)液10 cm。通過(guò)光催化降解亞甲基藍(lán)來(lái)評(píng)價(jià)各種不同TiO2粉體的光催化性能。試驗(yàn)過(guò)程中用介孔二氧化鈦降解亞甲基藍(lán)時(shí),催化劑的介孔結(jié)構(gòu)將亞甲基藍(lán)染料完全吸附,不易分離無(wú)法降解,改用甲基橙染料測(cè)定其光催化活性。試驗(yàn)中所用染料溶液濃度均為10 mgL。測(cè)試過(guò)程如下: g 制備好的TiO2光催化劑超聲分散到60mL濃度為10 mgL的亞甲基藍(lán)水溶液中。在黑暗處超聲分散1 ,1995 ,12 :24[9] 豆俊峰、鄒振揚(yáng)、鄭澤根,材料導(dǎo)報(bào),2000 ,6(36) :114[10]  張立德編著,嚴(yán)東生、馮端主編,材料新星 納米材料科學(xué),長(zhǎng)沙湖南科學(xué)技術(shù)出版社,1997[11]  Kayano S , Kikuchi Y,Hashzzmoto K. et al . Enviro Sci . Tech 1998 ,32 (5) :726[12]  藤嶼昭,電氣化學(xué),1996 ,64(10) :1052[13]  海老原功,工業(yè)材料,1997 ,45(10) :77[14]  Ferrari A ,Development , Industrialization of Nanoposite Ce2ramic Materials ,in : Proceedings of Nanostrcture Materials andCoatings’95 ,Atlanta Airport Marriott . Atlanta , Georgia ,USA ,1995[15]  Bahneman D W,J . Phys. Chem. ,98 ,1025. 1994[16]  Choi W Y,Angew. Chem. ,33 ,1091. 1994[17]  符小榮,張枝剛,宋世庚等. 應(yīng)用化學(xué),1997 ,4(14) :77[18]  Sukharev V ,Wold A ,Caoo YM,et al . ,J . Solid State Chem. , 115 ,187. 1995[19] Cui H ,Dwight K,Soled S ,et al . ,J . Solid State Chem. ,115 , 187. 1995[20]  肖齊,邱冠周,胡岳華等. 材料導(dǎo)報(bào),2001 ,8(35) :128[21]  高鐵,錢朝勇,于向陽(yáng). 材料導(dǎo)報(bào),2000 ,7(27) :115[22] K. Nagaveni, M. S. Hegde, G. Madras, J. Phys. Chem. B 108 (2004) 2020420212.[23] Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li, S. Cai, J. Mater. Sci. 34 (1999) 37213729.[24] Y. Cao, W. Yang, W. Zhang, G. Liu, P. Yue, New J. Chem. 28 (2004) 218222.[25] X. H. Wang, . Li, H. Kamiyama, M. Katada, N. Ohashi, Y. Moriyoshi, T. Ishigaki, J. Am. Chem. Soc. 127 (2005) 1098210990.[26] M. Anpo, M. Takeuchi, J. Catal. 216 (2003) 505516.[27] A. Fuerte, M. D. HernandezAlonso, . Maira, Chem. Commun. (2001) 27182719.[28] W. Zhao, C. C. Chen, J. C. Zhao, J. Phys. Chem. B 106 (2002) 50225028.[29] J. C. Yu, . Li, X. C. Wang, Chem. Commun. (2006) 27172719.[30]J. Zhu, J. Ren, . Li, J. Phys. Chem. C 111 (2007) 1896518969.[31]M. Iwasaki, M. Hara, H. Kawada, J. Colloid. Interf. Sci. 224 (2000) 202204.[32]K. T. Ranjit, I. Willner, S. H. Bossmann, J. Catal. 204 (2001) 305313.[33] . Xu, Y. Gao, . Liu, J. Catal. 207 (2002) 151157.[34]Y. B. Xie, . Yuan, Appl. Catal. B 46 (2003) 251259.[35]W. Y. Su, J. X. Chen, X. Z. Fu, Appl. Catal. B 77 (2008) 264271.[36]T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, J. Phys. Chem. Solids 63 (2002) 19091910.[37]P. Cheng, M. Y. Gu, . Jin, Progress in Chemistry 17(1) (2005) 814.[38]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269271.[39]H. Irie, Y. Watanabe, K. Hashimoto, J. Phys. Chem. B 107 (2003) 54835486.[40]R. Nakamura, T. Tanaka, Y. Nakato, J. Phys. Chem. B 108 (30) (2004) 1061711062.[41]Y. Wang, D. Doren, J. Solid State Commun. 136 (2005) 186189.[42]J. Y. Lee, J. Park, J. H. Cho, Appl. Phys. Lett. 87 (1) (2005) art no. 011904.[43]C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, J. Phys. Chem. B 109 (2005) 14841489.[44]T. Ihara, M. Miyoshi, Y. Iriyama, Appl. Catal. B 42(4) (2003) 403409.[45]Y. Nakano, T. Morikawa, T. Ohwaki, Y. Taga, Appl. Phys. Lett. 87 (2005) 052111052111.[46]S. U. M. Khan, M. Al_Shahry, . Ingler, Science 297 (2002) 22432245.[47]H. Irie, Y. Watanabe, K. Hashimoto, Chem. Lett. 32 (2003) 772773.[48]H. Wang, . Lewis, J. Phys. Condens. Matter. 17 (2005) 209213.[49]. Yu, J. Yu, W. Ho, Chem. Mater. 14 (2002) 38083816.[50]D. Li, H. Haneda, S. Hishita, Journal of Fluorine Chemistry 126 (2005) 6977.[51]T. Yamaki, T. Umebayashi, T. Sumita, Nucl. Instrum. Meth. Phys. Res. 306 (2003) 254258.[52]C. Minero, G. Mariella, V. Maurino, Langmuir 16 (2000) 26322641.[53]C. Minero, G. Mariella, V. Maurino, Langmuir 16 (2000) 89648972.[54]T. Umebayashi, T. Yamaki, S. Tanaka, Chem. Lett. 32 (2003) 330331.[55]T. Ohno, T. Mitsui, M. Matsumura, Chem. Lett. 32 (2003) 364365.[56]T. Ohno, M. Akiyoshi, T. Umebayashi, Appl. Catal. A 265 (2004) 115121.[57]吉延江, 張海洋, 李澤文, 功能材料 38 (2007) 24442446.[58]王潔, 文晨, 科技信息 17 (2008) 2122.[59]馬明遠(yuǎn), 劉嶺松, 李佑稷, 王小華, 硅酸鹽學(xué)報(bào) 37 (2009) 14581463. 翻譯部分 英文:Facile Synthesis of Highly Ordered Mesoporous and Well Crystalline TiO2: Impact of Different Gas Atmosphere and CalcinationTemperatures on Structural PropertiesABSTRACT: Ordered mesoporous TiO2 nanoparticles with amorphous pore walls were synthesized by a facile one pot template synthesis. The samples were effectively reduce the crystallite size by 2 nm pared to the calcination in air, leading to a better ordering of the mesoporous system than in the case of the calcination under air. The phase analysis of the powder diffraction data shows that the anatase content remains constant with temperature and is fed by an amorphous precursor and consumed by rutile when it is formed. KEYWORDS: ordered mesoporous material, TiO2, phase relationships, anatase, rutile.1. INTRODUCTIONSince the first description of an ordered mesoporous molecular sieve by Kresge et ordered mesoporous materials (OMMs) .2?5 The research in the recent years that the synthesis of a broad variety of pore systems is possible by often very simple synthesis pathways。 also the range of pore wall materials extended from SiO2 to other metal oxides (., Ti, Fe, Al).5?7A typical simple synthesis pathway for OMMs is a template synthesis (Liquid Crystal Templating8) in which the type of template defines the pore arrangement and size. Here different approaches like evaporation induced selfassembly (EISA) or synthesis with regularly packed monodispersive polymethyl methacrylate (PMMA) microspheres9 are feasible. For the EISA approach important factors described in the literature are the of the surfactant
點(diǎn)擊復(fù)制文檔內(nèi)容
語(yǔ)文相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1