freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

用首次積分法求drinfel’dsokolovwilson方程的精確解本科畢業(yè)論文(編輯修改稿)

2025-07-25 06:50 本頁面
 

【文章內(nèi)容簡介】 315)得??,xAB? (317)其20DXa?紅河學(xué)院本科畢業(yè)論文(設(shè)計)9中 是積分常數(shù).將 代入方程(315)并取 的系數(shù)為D??Xa?、0 ??3,210?iX零,得到 (318)212=0A+B(c),3,=(),Rc???????????,解方程組(318),可得 (319)2110,(),(),6RRBDAcc?????????將(319)代入(310)式,得到方程組(38)的一個首次積分 (320)2211().YXc?????????兩邊平方得 (324222211()().AcRXcR???????21)利用輔助方程 ,通過查表一,知,當(dāng)242()()()dFpqFr????????? (322212,4()(),ApkqcRkr???????????22)時,即 ,方程(31)的解為221,cRcAk?????? (321v()ns,)u(,cc???????23) Drinfel’dSokolovWilson 方程10當(dāng) 時,解(323)變?yōu)?k? (321v()tan,Ru(),cc????????24)當(dāng) 時,解(323)變?yōu)?k (321v()sin,u().cc???????25)當(dāng) (322212,4(),ApqcRkr????????????26)即 ,方程(31)的解為221,ccAik???? (321v()dn,)Ru(,cc???????27)且當(dāng) 時,解(327)變?yōu)?k? (321v()sech(),Ru,c?????????28) 當(dāng) (322212,4()(),ApqcRkr???????????29)紅河學(xué)院本科畢業(yè)論文(設(shè)計)11即 ,方程(31)的解為221,cRcAk?????? (321v()ns,)u(,cc???????30)且當(dāng) 時,解(330)變?yōu)?k? (331)21v()coth(),Ru,c?????????當(dāng) 時,解(330)變?yōu)?k (321v()csh(),?????????32)當(dāng) (3222124()ApkqcRkr???????????33)即 ,方程(31)的解為22211,cRcAk??????? (321v()nd,)u(,cc???????34)且當(dāng) 時,解(334)變?yōu)?k? (321v()cosh(),?????????35) Drinfel’dSokolovWilson 方程12當(dāng) (336)22212,4(),ApkqcRr???????????即 ,方程(31)的解為22211,ccAkR?????? (321v()sc,)u(,c???????37)且當(dāng) 時,解(337)變?yōu)?k? (321v()sinh(),Ru,cc?????????38)當(dāng) 時,解(337)變?yōu)?k (321v()tan,Ru().cc????????39)當(dāng) (322212,4(),ApqcRkr???????????40)即 ,方程(31)的解為221,cRcAk???????紅河學(xué)院本科畢業(yè)論文(設(shè)計)13 (321v()cs,k)Ru(,c????????41)且當(dāng) 時,解(341)變?yōu)?k? (321v()csh(),Ru,c?????????42)當(dāng) 時,解(341)變?yōu)?k (321v()cot,Ru().c????????43)當(dāng) (344)22212,4()(),ApkqcRkr???????????即 ,方程(31)的解為221,ccAkR????? (321v()d,)uc(,c???????45)且當(dāng) 時,解(345)變?yōu)?k? (321v()cos(),?????????46)當(dāng) Drinfel’dSokolovWilson 方程14 (322212,4()(),ApqcRkr???????????47)即 ,方程(31)的解為221,cRcAk?????? (321v()d,)uc(,???????48)且當(dāng) 時,解(348)變?yōu)?k? (321v()sec,Ru().????????49)情形二設(shè) ,由(38)得到2?m (350)????,0210 ??YXaXa方程(350)變 ??????2022,dqqdXYaXYa?????? ?????????? ?比較上式左右兩邊 的各次冪系數(shù)得到: Y的系數(shù):0Y (339。 31101()()())(),32RaXXacXc???????? ?????? ?? ?51) 的系數(shù):1Y (3239。2()(),a??52)的系數(shù):紅河學(xué)院本科畢業(yè)論文(設(shè)計)15 (353)39。121()()(),aXaX????的系數(shù):3Y (354)021039。()()39。()().YX?由方程(352)可得出 必為常數(shù)且 ,不失一般性,取??a2??0????,2?Xa第一種情形:當(dāng) ; 時,取 , ,代入到(31()0x()??21a??0X51) (352) 、 (353) 、 (354)得 (3139。(),aX??55) (30139。()239。(),YaX??56)求得 ( 為常數(shù)),將2410 2()()()6RcXRc?????????代入(350)得到012。aXa (3239。 421()().6YXcc??????????????57)令 ,則當(dāng)12(),(),2Rpqcrc?????? (3212(),6,kRqcr???????????58)即 ,方程(31)有解為122(),6()Rckk?????????? Drinfel’dSokolovWilson 方程16 (321v()ns,k)Ru(,cc????????59)且當(dāng) 時,解(359)變?yōu)?k? (321v()tan,Ru(),cc????????60)當(dāng) 時,解(359)變?yōu)?k (321v()sin,Ru().cc????????61)當(dāng) (32122(),6,pkcRqrk????????????62)即 ,方程(31)的解為1222(),6Rckk????????? (321v()n,)uc(,c??????63)且當(dāng) 時,解(363)變?yōu)?k? (321v()sech(),Ru,c?????????64)當(dāng) 時,解(363)變?yōu)?k紅河學(xué)院本科畢
點擊復(fù)制文檔內(nèi)容
黨政相關(guān)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1