【總結】南莫中學萬金圣求函數值域(最值)的常見方法有哪些?基礎練習1.()基礎練習的最值是發(fā)散思維的最值.有界判別數1形數2形發(fā)散思維的值域.解:-------------------------
2025-10-28 13:41
【總結】1淺析無理型函數值域的幾種常規(guī)求法一、觀察法:通過對函數定義域及其解析式的分析,從而確定函數值域。例1.求函數y=3+值域。42?x解:∵≥2,∴函數值域為[5,+。x)?二、單調性法:如果函數在某個區(qū)間上具有單調性,那么在該區(qū)間兩端點函數取得最值。例2.求函數y=x-的值域。x1? 解:函數的定義域為,函數y=x和函數y=-在上均
2025-06-28 15:10
【總結】百度搜索李蕭蕭文檔百度搜索李蕭蕭文檔難點6函數值域及求法函數的值域及其求法是近幾年高考考查的重點內容之一.本節(jié)主要幫助考生靈活掌握求值域的各種方法,并會用函數的值域解決實際應用問題.●難點磁場(★★★★★)設m是實數,記M={m|m1},f(x)=log3(x2-4mx+4m2+m+11?m).(1)證明:當
2025-08-14 16:06
【總結】函數值域方法歸納1.常見函數的值域.(1)一次函數的值域為R.(2)二次函數,當時的值域為,當時的值域為.(3)反比例函數的值域為.(4)指數函數的值域為.(5)對數函數的值域為R.(6)正,余弦函數的值域為,正切函數的值域為R.2.求函數值域(最值)的常用方法.一、觀察法(根據函數圖象、性質能較容易得出值域(最值)的簡單函數)1、求y=|x+2|
2025-06-27 04:51
【總結】南莫中學萬金圣求函數值域(最值)的常見方法有哪些?基礎練習1.的值域是函數1sin21??xy()???????1,31)(A),1[]31,)((??????B]31,)((???C),1)[(??D基礎
2025-10-31 09:24
【總結】必修1復習專題函數之二(值域)吳川三中文科數學出版一相關概念1、值域:函數,我們把函數值的集合稱為函數的值域。2、最值:求函數最值常用方法和函數值域的方法基本相同。事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值。因此,求函數的最值和值域,其實質是相同的,只是提問不同而已。二確定函數值域的原則1、當函數用表格給出時,函數的值域指表格中實數y
2025-05-16 04:33
【總結】完美WORD格式函數定義域、值域求法總結:(1)分母不為零(2)偶次根式的被開方數非負。(3)對數中的真數部分大于0。(4)指數、對數的底數大于0,且不等于1(5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等等。
2025-04-04 05:05
【總結】......2014年07月21日1051948749的高中數學組卷2014年07月21日1051948749的高中數學組卷 一.選擇題(共18小題)1.(2007?河東區(qū)一模)若函數f(x)=的定義
2025-03-24 12:15
【總結】完美WORD格式函數定義域、值域求法總結一、定義域是函數中的自變量x的范圍。求函數的定義域需要從這幾個方面入手:(1)分母不為零(2)偶次根式的被開方數非負。(3)對數中的真數部分大于0。(4)指數、對數的底數大于0,且不等于1(5)y=tan
2025-06-16 03:50
【總結】菁優(yōu)網2014年07月21日1051948749的高中數學組卷2014年07月21日1051948749的高中數學組卷 一.選擇題(共18小題)1.(2007?河東區(qū)一模)若函數f(x)=的定義域為A,函數g(x)=的定義域為B,則使A∩B=?的實數a的取值范圍是( ?。.(﹣1,3)B.[﹣1,3]C.(﹣2,4)
【總結】函數定義域、值域求法總結一、定義域是函數y=f(x)中的自變量x的范圍。求函數的定義域需要從這幾個方面入手:(1)分母不為零(2)偶次根式的被開方數非負。(3)對數中的真數部分大于0。(4)指數、對數的底數大于0,且不等于1(5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等等。(6)中x二、值域是函數y=f(x)中y的取值范圍。這些解
2025-06-16 04:13
【總結】函數定義域、值域求法總結1、函數的定義域是指自變量“x”的取值集合。2、在同一對應法則作用下,括號內整體的取值范圍相同。一般地,若已知f(x)的定義域為[a,b],求函數f[g(x)]的定義域時,由于分別在兩個函數中的x和g(x)受同一個對應法則的作用,從而范圍相同。因此f[g(x)]的定義域即為滿足條件a≤g(x)≤b的x的取值范圍。一般地,若已知f
2025-06-25 05:14
【總結】函數定義域、值域求法總結(一)求函數定義域1、函數定義域是函數自變量的取值的集合,一般要求用集合或區(qū)間來表示;2、常見題型是由解析式求定義域,此時要認清自變量,其次要考查自變量所在位置,位置決定了自變量的范圍,最后將求定義域問題化歸為解不等式組的問題;3、如前所述,實際問題中的函數定義域除了受解析式限制外,還受實際意義限制,如時間變量一般取非負數,等等;4、對復合函數y=
2025-04-16 23:38
【總結】高中數學復習專題講座求函數值域的常用方法及值域的應用高考要求函數的值域及其求法是近幾年高考考查的重點內容之一本節(jié)主要幫助考生靈活掌握求值域的各種方法,并會用函數的值域解決實際應用問題重難點歸納(1)求函數的值域此類問題主要利用求函數值域的常用方法配方法、分離變量法、單調性法、圖像法、換元法、不等式法等無論用什么方法求函數的值域,都必須考慮函數的定義域
2025-01-14 09:45
【總結】函數解析式的七種求法一、待定系數法:在已知函數解析式的構造時,可用待定系數法.例1設是一次函數,且,求.解:設,則,..二、配湊法:已知復合函數的表達式,求的解析式,的表達式容易配成的運算形式時,常用配湊法.但要注意所求函數的定義域不是原復合函數的定義域,而是的值域.例2已知,求的解析式.解:,,.三、
2025-03-24 12:18