【總結】習題一寫出下列隨機試驗的樣本空間:(1)解:連續(xù)5次都命中,至少要投5次以上,故;(2)解:;(3)解:醫(yī)院一天內前來就診的人數理論上可以從0到無窮,所以;(4)(5)解:用0表示合格,1表示不合格,則;(6)解:用表示最低氣溫,表示最高氣溫;考慮到這是一個二維的樣本空間,故:;(7)解:;(8)解:;
2025-06-18 13:28
【總結】概率論與數理統(tǒng)計題庫及答案一、單選題1.在下列數組中,()中的數組可以作為離散型隨機變量的概率分布.(A)(B)(C)(D)2.下列數組中,(?。┲械臄到M可以作為離散型隨機變量的概率分布.(A)(B)(C)(D
2025-06-24 21:10
【總結】習題三,以X表示在三次中出現(xiàn)正面的次數,.【解】X和Y的聯(lián)合分布律如表:XY0123100300、2只紅球、2只白球,在其中任取4只球,以X表示取到黑球的只數,.【解】X和Y的聯(lián)合分布律如表:XY0123000102P(0黑,2紅,2
2024-09-01 05:48
【總結】概率論與數理統(tǒng)計假設檢驗結課論文———淺析數學期望在實際生活中的應用姓名:班級:學號:專業(yè):摘要:假設檢驗中的一個重要概念,是隨機變量的數字特征之一,體現(xiàn)了隨機變量總體取
2025-06-24 20:52
【總結】《概率論與數理統(tǒng)計》課程教案?使用教材作者:賀興時書名:概率論與數理統(tǒng)計第一章隨機事件及概率一.本章的教學目標及基本要求?(1)?理解隨機試驗、樣本空間、隨機事件的概念;?(2)?掌握隨機事件之間的關系與運算,;?(3)?掌握概率的基本性質以及簡單的古典概率計算;?學會幾何
2025-04-17 05:05
【總結】考試班級學號考位號姓名年月日考試用廣西大學課程考試試卷(——學年度第學期)課程名稱:概率論與數理統(tǒng)計試卷庫序號:14命題教師簽名:教研室主任簽名:院長簽名:題號一二三四五六七八九十總分應得分20151212
2025-06-10 01:03
【總結】一、填空題(每題3分,共15分) 1、對于隨機事件與,已知且,則。. 2、已知,且與相互獨立,設,則 。3隨機變量X的分布函數為,則隨機變量X的分布律為。 4、隨機變量X服從參數為λ的泊松分布,D(-2X+1)=_____________。5、設是來自總體的樣本,均為未知參數,則
2025-06-24 20:55
【總結】概率論與數理統(tǒng)計輔導王曉謙引言數學是刻畫自然規(guī)律和社會規(guī)律的科學語言和有效工具。在自然科學、技術科學、經濟科學、社會科學的應用不斷深入。與計算機的結合,使以前只有理論而無法計算的內容找到了廣闊的應用領域。概率和統(tǒng)計具有不同于其他數學分支的思維方式。我們在教學實踐中既要體會概率和統(tǒng)計思想與其他數學思想
2025-07-19 20:30
【總結】概率論與數理統(tǒng)計是研究隨機現(xiàn)象統(tǒng)計規(guī)律性的一門學科。隨機現(xiàn)象的統(tǒng)計規(guī)律性只有在相同條件下進行大量的重復試驗才能呈現(xiàn)出來。所以,要從隨機現(xiàn)象中去尋求統(tǒng)計規(guī)律性,就應該對隨機現(xiàn)象進行大量的觀測。研究隨機現(xiàn)象的大量觀測,常采用極限形式,由此導致了極限定理的研究。極限定理的內容很廣泛,最重要的有兩種:“大
2025-04-29 12:04
【總結】1(十六)開始王柱2王柱第四章部分作業(yè)答案311.設隨機變量X的分布律X2?1?01p1/81/43/81/4求)(XE和??XD。422.設隨機變量X的密度函數為???????
【總結】習題一:寫出下列隨機試驗的樣本空間:(1)某籃球運動員投籃時,連續(xù)5次都命中,觀察其投籃次數;解:連續(xù)5次都命中,至少要投5次以上,故;(2)擲一顆勻稱的骰子兩次,觀察前后兩次出現(xiàn)的點數之和;解:;(3)觀察某醫(yī)院一天內前來就診的人數;解:醫(yī)院一天內前來就診的人數理論上可以從0到無窮,所以;(4)從編號為1,2,3,4,5的
2025-06-25 02:36
【總結】2022/3/141浙大概率論與數理統(tǒng)計2概率論與數理統(tǒng)計是研究隨機現(xiàn)象數量規(guī)律的一門學科。3?第一章概率論的基本概念?隨機試驗?樣本空間?概率和頻率?等可能概型(古典概型)?條件概率?獨立性?第二章隨機變量及其分
2025-02-21 10:09
【總結】201.將一枚均勻的硬幣拋兩次,事件分別表示“第一次出現(xiàn)正面”,“兩次出現(xiàn)同一面”,“至少有一次出現(xiàn)正面”。試寫出樣本空間及事件中的樣本點。解:(正,正),(正,反),(反,正),(反,反)(正,正),(正,反);(正,正),(反,反)(正,正),(正,反),(反,正)2.在擲兩顆骰子的試驗中,事件分別表示“點數之和為偶數”,“點數之和小于5”,“點數
2025-06-24 21:00
【總結】習題三,以X表示在三次中出現(xiàn)正面的次數,以Y表示三次中出現(xiàn)正面次數與出現(xiàn)反面次數之差的絕對值.試寫出X和Y的聯(lián)合分布律.【解】X和Y的聯(lián)合分布律如表:012310131113C2228???23111C3/8222???03180011112
2025-01-09 03:33
【總結】概率論與數理統(tǒng)計及其應用習題解答第1章隨機變量及其概率1,寫出下列試驗的樣本空間:(1)連續(xù)投擲一顆骰子直至6個結果中有一個結果出現(xiàn)兩次,記錄投擲的次數。(2)連續(xù)投擲一顆骰子直至6個結果中有一個結果接連出現(xiàn)兩次,記錄投擲的次數。(3)連續(xù)投擲一枚硬幣直至正面出現(xiàn),觀察正反面出現(xiàn)的情況。(4)拋一枚硬幣,若出現(xiàn)H則再拋一次;若出現(xiàn)T,則再拋一顆骰子,觀
2025-06-24 15:13