【總結(jié)】常微分方程的初等解法1.常微分方程的基本概況:自變量﹑未知函數(shù)及函數(shù)的導(dǎo)數(shù)(或微分)組成的關(guān)系式,得到的便是微分方程,通過(guò)求解微分方程求出未知函數(shù),自變量只有一個(gè)的微分方程稱(chēng)為常微分方程。:常微分方程是研究自然科學(xué)和社會(huì)科學(xué)中的事物、物體和現(xiàn)象運(yùn)動(dòng)﹑演化和變化規(guī)律的最為基本的數(shù)學(xué)理論和方法。物理﹑化學(xué)﹑生物﹑工程﹑航空﹑航天﹑醫(yī)學(xué)﹑經(jīng)濟(jì)和金融領(lǐng)域中的許多原理和規(guī)律都可以
2025-06-18 13:01
【總結(jié)】山西師范大學(xué)本科畢業(yè)論文(設(shè)計(jì))常微分方程的初等解法與求解技巧姓名張娟院系數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院專(zhuān)業(yè)信息與計(jì)算科學(xué)班級(jí)12510201學(xué)號(hào)1251020126指導(dǎo)教師王曉鋒答辯日期成績(jī)常微分方程的初等解法與求解技巧內(nèi)容摘
2025-06-24 15:00
【總結(jié)】第一篇:常微分方程答案第三章 =x+y2通過(guò)點(diǎn)(0,0)的第三次近似解。dx 解:f(x,y)=x+y2,令j0(x)=y0=0,則 j1(x)=y0+òf(x,j0(x))dx=òxdx=...
2024-10-27 20:18
【總結(jié)】....常微分方程1.,并求滿(mǎn)足初始條件:x=0,y=1的特解.解:對(duì)原式進(jìn)行變量分離得并求滿(mǎn)足初始條件:x=0,y=1的特解.解:對(duì)原式進(jìn)行變量分離得:3解:原式可化為:12.解15.16.解:
2025-06-26 20:30
【總結(jié)】習(xí)題2-1判斷下列方程是否為恰當(dāng)方程,并且對(duì)恰當(dāng)方程求解:1.0)12()13(2????dyxdxx解:13),(2??xyxP,12),(??xyxQ,則0???yP,2???xQ,所以xQyP?????即原方程不是恰當(dāng)方程.2.0)2()2(????dyyx
2025-01-10 04:15
【總結(jié)】 常微分方程求解的高階方法畢業(yè)論文目錄第一章前言 1 1 1 1、通解與特解 1 2. 2 3 4第二章數(shù)值解法公共程序模塊分析 5第三章歐拉(Euler)方法 7Euler方法思想 7Euler方法的誤差估計(jì) 8 8 8 9第四章休恩方法 10休恩方法思想 10 10第五章泰勒
2025-06-25 13:51
【總結(jié)】目錄上頁(yè)下頁(yè)返回結(jié)束微分方程課程的一個(gè)主要問(wèn)題是求解,即把微分方程的解通過(guò)初等函數(shù)或它們的積分表達(dá)出來(lái),但對(duì)一般的微分方程是無(wú)法求解的,如對(duì)一般的二元函數(shù)),(yxf,我們無(wú)法求出一階微分方程),(yxfy??(1)的解,但是對(duì)某些特殊類(lèi)型的方程,我們可設(shè)法轉(zhuǎn)化為已解決的問(wèn)題第二章
2024-12-08 09:04
【總結(jié)】1.=2xy,并滿(mǎn)足初始條件:x=0,y=1的特解。解:=2xdx兩邊積分有:ln|y|=x+cy=e+e=cex另外y=0也是原方程的解,c=0時(shí),y=0原方程的通解為y=cex,x=0y=1時(shí)c=1特解為y=e.2.ydx+(x+1)dy=0并求滿(mǎn)足初始條件:x=0,y=1的特解。解:ydx=-(x+1)dydy=-dx兩邊積分
2025-06-26 20:41
【總結(jié)】目錄上頁(yè)下頁(yè)返回結(jié)束§幾個(gè)線性系統(tǒng)的計(jì)算機(jī)相圖平面線性系統(tǒng)的初始奇點(diǎn)目錄上頁(yè)下頁(yè)返回結(jié)束本節(jié)我們?nèi)钥紤]被稱(chēng)為平面系統(tǒng)的二維自治系統(tǒng)(,)(,)dxfxydtdygxydt?????
2025-01-20 04:56
【總結(jié)】目錄上頁(yè)下頁(yè)返回結(jié)束§一階隱式微分方程一階顯式微分方程),(yxfy??一階隱式微分方程0),,(??yyxF()能從上式中解出,y?就可以化成顯式方程。例1求解微分方程.0)()(2????xydxdyyxdxdy目錄上頁(yè)下頁(yè)返回
2024-10-19 17:11
【總結(jié)】浙江師范大學(xué)數(shù)理與信息工程學(xué)院浙江師范大學(xué)數(shù)理與信息工程學(xué)院模擬試題1一、填空題:(每小題2分,共8分)1.方程()()0dypxyQxdx???的通解是①;2.(,)(,)0MxydxNxydy??是全微分方程(恰當(dāng)方程)的充要
2025-01-09 00:34
【總結(jié)】常微分方程練習(xí)試卷一、填空題。1.方程是階(線性、非線性)微分方程.2.方程經(jīng)變換,可以化為變量分離方程.3.微分方程滿(mǎn)足條件的解有個(gè).4.設(shè)常系數(shù)方程的一個(gè)特解,則此方程的系數(shù),,.5.朗斯基行列式是函數(shù)組在上線性相關(guān)的
【總結(jié)】常微分方程論文學(xué)院:數(shù)學(xué)科學(xué)學(xué)院班級(jí):12級(jí)統(tǒng)計(jì)班指導(dǎo)教師:宋旭霞小組成員:張維萍付佳奇張韋麗張萍
2025-06-03 12:01
【總結(jié)】第三章一階微分方程的解的存在定理需解決的問(wèn)題?,)(),(1000的解是否存在初值問(wèn)題???????yxyyxfdxdy?,,)(),(2000是否唯一的解是存在若初值問(wèn)題???????yxyyxfdxdy§解的存在唯一性定理
2025-01-20 04:55
【總結(jié)】習(xí)題(一)、解下列方程,并求奇解(如果存在的話):。1、解:令,則,兩邊對(duì)x求導(dǎo),得從得時(shí),;從得, 為參數(shù),為任意常數(shù).經(jīng)檢驗(yàn)得 ,是方程奇解.2、解:令,則,兩邊對(duì)x求導(dǎo),得,解之得,所以,且y=x+1也是方程的解,但不是奇解.3、解:這是克萊洛方