【總結(jié)】.,已知等邊△ABC,P在AC延長(zhǎng)線上一點(diǎn),以PA為邊作等邊△APE,EC延長(zhǎng)線交BP于M,連接AM,求證:(1)BP=CE;(2)試證明:EM-PM=AM.2、點(diǎn)C為線段AB上一點(diǎn),△ACM,△CBN都是等邊三角形,線段AN,MC交于點(diǎn)E,BM,CN交于點(diǎn)F。求證:(1)
2025-07-26 08:59
【總結(jié)】......全等三角形1已知:如圖,四邊形ABCD中,AC平分DBAD,CE^AB于E,且DB+DD=180°,求證:AE=AD+BE2如圖17所示,在∠AOB的兩
2025-03-24 07:41
【總結(jié)】........全等三角形:⑴全等形:能夠完全重合的兩個(gè)圖形叫做全等形.⑵全等三角形:能夠完全重合的兩個(gè)三角形叫做全等三角形.理解:①全等三角形形狀與大小完全相等,與位置無(wú)關(guān);②一個(gè)三角形經(jīng)過(guò)平移、翻折、旋轉(zhuǎn)可以得到它的全等形;③三角形
2025-04-16 23:10
【總結(jié)】三角形幾何A級(jí)概念:(要求深刻理解、熟練運(yùn)用、主要用于幾何證明)1.三角形的角平分線定義:三角形的一個(gè)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線.(如圖)幾何表達(dá)式舉例:(1)∵AD平分∠BAC∴∠BAD=∠CAD(2)∵∠BAD=∠CAD∴AD是角平分線2.三角形的中線定義:在三角形中,連結(jié)一個(gè)頂點(diǎn)和它的對(duì)邊的
2025-04-04 03:15
【總結(jié)】......全等三角形知識(shí)點(diǎn)總結(jié)及復(fù)習(xí)一、知識(shí)網(wǎng)絡(luò)二、基礎(chǔ)知識(shí)梳理(一)、基本概念1、“全等”的理解全等的圖形必須滿足:(1)形狀相同的圖形;(2)大小相等的圖形;即能夠完全重合的兩個(gè)圖形
2025-04-16 22:13
【總結(jié)】全等三角形:⑴全等形:能夠完全重合的兩個(gè)圖形叫做全等形.⑵全等三角形:能夠完全重合的兩個(gè)三角形叫做全等三角形.理解:①全等三角形形狀與大小完全相等,與位置無(wú)關(guān);②一個(gè)三角形經(jīng)過(guò)平移、翻折、旋轉(zhuǎn)可以得到它的全等形;③三角形全等不因位置發(fā)生變化而改變。.:理解:①長(zhǎng)邊對(duì)長(zhǎng)邊,短邊對(duì)短邊;最大角對(duì)最大角,最小角對(duì)最小角;②對(duì)應(yīng)角的對(duì)邊為對(duì)應(yīng)邊,對(duì)應(yīng)邊對(duì)的角為對(duì)應(yīng)角
2025-04-16 23:09
【總結(jié)】全等三角形一、目標(biāo)認(rèn)知學(xué)習(xí)目標(biāo): 1.了解全等三角形的概念和性質(zhì),能夠準(zhǔn)確地辨認(rèn)全等三角形中的對(duì)應(yīng)元素; 2.探索三角形全等的條件,能利用三角形全等進(jìn)行證明,掌握綜合法證明的格式。重點(diǎn): 1.使學(xué)生理解證明的基本過(guò)程,掌握用綜合法證明的格式; 2.三角形全等的性質(zhì)和條件。難點(diǎn): ??; 2.選用合適的條件證明兩個(gè)三角形全等經(jīng)
2025-06-19 22:55
【總結(jié)】....歡迎您的光臨,!希望您提出您寶貴的意見(jiàn),你的意見(jiàn)是我進(jìn)步的動(dòng)力。贈(zèng)語(yǔ);1、如果我們做與不做都會(huì)有人笑,如果做不好與做得好還會(huì)有人笑,那么我們索性就做得更好,來(lái)給人笑吧!2、現(xiàn)在你不玩命的學(xué),以后命玩你。3、我不知道年少輕狂,我只知道勝者為王。4、不要做金錢(qián)、權(quán)利的奴隸;應(yīng)學(xué)會(huì)做
【總結(jié)】15/15
【總結(jié)】,在△ABC中,已知D是BC中點(diǎn),DE⊥AB,DF⊥AC,垂足分別是E、F,DE=DF.求證:AB=ACABCDEF12:如圖,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=?9.已知:如圖,在△ABC中,∠ACB=90°,CD⊥AB于D,∠A
2025-03-25 06:30
【總結(jié)】全等三角形一、選擇1、(2008臺(tái)灣)如圖,有兩個(gè)三角錐ABCD、EFGH,其中甲、乙、丙、丁分別表示rABC、rACD、rEFG、rEGH。若DACB=DCAD=DEFG=DEGH=70°,DBAC=DACD=DEGF=DEHG=50°,則下列敘述何者正確
2025-06-24 20:38
【總結(jié)】.......《全等三角形》單元復(fù)習(xí)一.選擇題1.①全等三角形對(duì)應(yīng)邊相等;②三個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形全等;③三邊對(duì)應(yīng)相等的兩個(gè)三角形全等;④有兩邊對(duì)應(yīng)相等的兩個(gè)三角形全等.上述命題中正確的個(gè)數(shù)有()A.4個(gè)
2025-03-25 07:32
【總結(jié)】......第27章:相似一、基礎(chǔ)知識(shí)(一).比例、比例中項(xiàng)、比例線段;:(1)基本性質(zhì):(2)合比定理:(3)等比定理::如圖,若,則點(diǎn)P為線段AB的黃金分割點(diǎn).4.平行線分線段成比例定
2025-06-23 18:33
【總結(jié)】三角形等腰三角形和等邊三角形等腰三角形的定義:有兩邊相等的三角形是等腰三角形相等的兩個(gè)邊稱為這個(gè)三角形的腰等腰三角形的性質(zhì):。(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”),底邊上的中線,底邊上的高的重合(簡(jiǎn)寫(xiě)成“等腰三角形的三線合一”) 。(兩條腰上的中線相等,兩條腰上的高相等) 。 (需用等面積法證明) ,只有一條對(duì)稱軸,頂角平分線所在的直線是它的對(duì)
2025-04-04 03:52
【總結(jié)】全等三角形知識(shí)點(diǎn)梳理 ?。ㄒ唬?、基本概念 1、“全等”的理解 全等的圖形必須滿足: ?。?)形狀相同的圖形; (2)大小相等的圖形; 即能夠完全重合的兩個(gè)圖形叫全等形。同樣我們把能夠完全重合的兩個(gè)三角形叫做全等三角形?! ?、全等三角形的性質(zhì) ?。?)全等三角形對(duì)應(yīng)邊相等;(2)全等三角形對(duì)應(yīng)角相等;(3)全等三角形的對(duì)應(yīng)邊上的高、中線對(duì)應(yīng)