【總結】平面與平面垂直的判定回顧舊知(1)二面角的定義(2)二面角的平面角的定義(3)兩個平面垂直的定義問題:如何檢測所砌的墻面和地面是否垂直?如果一個平面經過了另一個平面的一條垂線,那么這兩個平面互相垂直.猜想:如果一個平面經過了另一個平面的一條垂線,那么這
2025-11-07 21:23
【總結】OAB??l如果兩個平面所成的二面角是直二面角,那么我們稱這兩個平面相互垂直.畫法:???記作:????兩個平面垂直的判定定理如果一個平面經過另一個平面的一條垂線,那么這兩個平面垂直αβCDAB建筑工人在砌墻時,為什么常用一端有鉛錘的線來檢查所砌
2025-11-08 23:36
【總結】12/28/2020,"異面直線所成的角"是怎樣定義的?直線a、b是異面直線,在空間任選一點O,分別引直線a'//a,b'//b,我們把相交直線a'和b'所成的銳角(或直角)叫做異面直線所成的角。,"直線和平面所成的角"是怎樣定義的?平面的一
2025-11-12 05:33
【總結】學習目標1熟練掌握面面垂直定義2熟練掌握面面垂直的判定定理及其證明過程3掌握證明面面垂直的常用方法1直二面角定義2互相垂直的平面αβCDABE平面與平面垂直的定義記作:畫法:問題:如果你是一個質檢員,你怎樣去檢測、判斷建筑中的一面墻和地面是否垂直呢?
2025-10-31 01:06
【總結】問題引入講授新課課堂練習小結觀察抽象出線面的一種特殊關系:探究拿出一直角三角板,回顧并思考形成圓錐的過程:現(xiàn)在要在操場上豎起一根旗桿,一般的,對旗桿的位置有什么樣的要求?問題一:問題二:線面垂直的定義記作:如果直線與平面內的任意一條直線都
2025-11-01 22:12
【總結】的判定旗桿與地面的位置關系觀察線面垂直大橋的橋柱與水面的位置關系HGFEDCBA假設書有無數(shù)頁,豎立在桌面上,書脊所在直線與桌面給人以垂直的印象.思考⑴書脊所在直線和各頁面與桌面交線的位置關系?⑵書脊所在直線與桌面中任意一條直線的位置關
2025-08-05 10:28
【總結】第九章立體幾何考點解讀分析解讀立體幾何在近幾年的高職考中,逐漸降低難度,減弱證明的要求,題量均為選擇題、填空題、解答題各一題,主要考查:、平面平行的判定及性質和直線、平面垂直的判定及性質綜合考查;、直線與平面平行的判定及性質求解異面直線所成的角、直線與平面垂直的判定及性質求解直線與平面所成的角;
2025-04-30 07:11
【總結】距離(二)??ABA?B?⑴和兩個平面同時垂直的直線,叫做這兩個平面的公垂線。公垂線夾在平行平面之間的部分,叫做這兩個平面的公垂線段。⑵兩個平行平面的公垂線段的長度,叫做兩個平行平面的距離。ABCA1思考:任意兩條異面直線都有公垂線嗎?
2025-05-13 01:22
【總結】平面與平面垂直的判定習題課二面角的計算:1、找到或作出二面角的平面角2、證明1中的角就是所求的角3、計算出此角的大小一“作”二“證”三“計算”16一個平面過另一個平面的垂線,則這兩個平面垂直。(1)定義(2)判定定理αCDABβ一、面面垂直
【總結】問題:如何檢測所砌的墻面和地面是否垂直?β如果一個平面經過了另一個平面的一條垂線,那么這兩個平面有何位置關系?猜想:aαγ符號語言:aa???????????如果一個平面經過了另一個平面的一條垂線,那么這兩個平面互相垂直。已知:AB⊥β,AB∩β
2025-11-11 23:51
【總結】問題2引入問題引入建筑工人砌墻時,常用一端系有鉛錘的線來檢查所砌的墻面是否和地面垂直,如果系有鉛錘的線和墻面緊貼,問題引入引入那么所砌的墻面與地面垂直。大家知道其中的理論根據嗎?問題2引入引入問題——它就是本節(jié)課的內容之一:平面與平面垂直的判定定理。
2025-11-01 01:04
【總結】?lP如果直線l與平面內的任意一條直線都垂直,我們說直線l與平面互相垂直,??記作.??l平面的垂線?直線l的垂面垂足回顧復習:旗桿與底面垂直生活中的線面垂直現(xiàn)象:大橋的橋柱與水面垂直生活中有很多直線
【總結】生活中有很多直線與平面垂直的實例實例引入旗桿與地面垂直大橋的橋柱與水面垂直生活中有很多直線與平面垂直的實例實例引入一條直線與一個平面垂直的意義是什么?引入新課AαB旗桿AB所在直線與地面內任意一條過點B的直線垂直.與地面內任意一條不過點B的直線B1C1也垂直.
【總結】教學設計安陽市第三十六中學王璐普通高中課程標準實驗教科書數(shù)學2必修人民教育出版社A版一、教材地位和作用新課程中立體幾何的內容更加注重定義、定理的產生和聯(lián)系,從而形成完整的知識結構體系。而平面與平面的垂直是兩個平面的一種重要的位置關系,是繼教材直線與直線的垂直、直線與平面的垂直之后的
2025-04-17 01:00
【總結】《?平面與平面垂直的判定》說課稿說課人:高長福我說的課是高中新課標《數(shù)學》必修2第二章第2節(jié)內容《平面與平面垂直的判定》。?一、教材分析:?1.教材地位和作用?本節(jié)課的主要內容有兩個:(1)二面角和二面角的平面角的概念,(2)平面與平面?zhèn)兇怪钡呐卸?。由于平面與平面垂直的概念是建立在二面角的基礎之上,且二面角的平面角不但定量地描述了兩相
2025-04-27 12:41