【總結(jié)】勾股定理復(fù)習(xí)(二)回顧本章內(nèi)容:直角三角形三邊關(guān)系勾股定理cba直角三角形a2+b2=c2直角三角形的判別cbaa2+b2=c2直角三角形(形)(數(shù))(形)(數(shù))Rt?ABC中,AB=c,BC=a,AC=b,?B=90?.(1)
2024-10-12 10:56
【總結(jié)】圓的復(fù)習(xí)蝦峙中學(xué):李國(guó)波知識(shí)要點(diǎn):一、圓1.圓是平面上到圓心距離等于半徑的點(diǎn)的集合.2.點(diǎn)與圓的位置關(guān)系:設(shè)⊙O的半徑為r,點(diǎn)到圓心的距離為d,則(1)點(diǎn)A在⊙O上,等價(jià)于d=r;(2)點(diǎn)A在⊙O內(nèi),等價(jià)于dr.
2024-11-06 23:22
【總結(jié)】第一章勾股定理1探索勾股定理2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?B認(rèn)識(shí)勾股定理直角三角形兩直角邊的等于斜邊的,如果用a、b、c分別表示直角三角形的兩直角邊和斜邊,那么.自我診斷1.1.在△ABC中,∠C=90°,a、
2025-06-20 20:23
【總結(jié)】探索勾股定理學(xué)習(xí)目標(biāo),并利用拼圖的方法論證勾股定理的存在.2.理解和掌握“直角三角形兩條直角邊的平方和等于斜邊的平方”.3.在探索和實(shí)際操作中掌握勾股定理在實(shí)際生活中的應(yīng)用.課前預(yù)習(xí)1.若直角三角形中兩直角邊分別為a,b,斜邊為c,則a,b,c之間的數(shù)量關(guān)系為
2024-11-25 22:44
【總結(jié)】本章主要內(nèi)容實(shí)數(shù)及相關(guān)概念無理數(shù)的引入無理數(shù)的表示定義:一個(gè)數(shù)x的平方等于a,即x2=a,則x叫a的平方根.記作:X=(a≥0)0的平方根是0.性質(zhì):一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù).0的平方根是0.負(fù)數(shù)沒有平
2024-11-06 23:06
【總結(jié)】勾股定理長(zhǎng)春市第九十中學(xué)西校劉芳2020年5月20日歡迎您進(jìn)入劉芳老師的課堂課前導(dǎo)學(xué)?三角形兩邊的和大于第三邊;?在直角三角形中,斜邊大于任意一條直角邊;?對(duì)于比較特殊的直角三角形(如右圖),如果一個(gè)銳角等于30°,那么它所對(duì)的直角
2024-11-06 13:14
【總結(jié)】勾股定理練習(xí)練習(xí)(1)1、在RtABC中,已知AB=c,AC=b,BC=a,∠B=90°,①已知a=5,b=13,求c②已知a=9,c=12,求b③已知a=7,b=25,求c④已知a=11,c=60,求b練習(xí)(2)2、一個(gè)直角三角形
2024-11-06 13:13
【總結(jié)】第一章勾股定理參考例題[例1]如下圖所示,△ABC中,AB=15cm,AC=24cm,∠A=60°,求BC的長(zhǎng).分析:△ABC是一般三角形,若要求出BC的長(zhǎng),只能將BC置于一個(gè)直角三角形中.解:過點(diǎn)C作CD⊥AB于點(diǎn)D在Rt△ACD中,∠A=60°∠ACD=90
2024-12-03 03:02
【總結(jié)】勾股定理如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2。cabABC∵在Rt△ABC中,∠C=90o,AB=c,AC=b,BC=a,?a2+b2=c2.逆定理如果三角形的三邊長(zhǎng)a、b、c滿足a2+b2=
【總結(jié)】沙田學(xué)校八(10)中隊(duì)c2\a2+b2=c2證明一弦圖?趙爽?東漢末至三國(guó)時(shí)代吳國(guó)人?為《周髀算經(jīng)》作注,並著有《勾股圓方圖說》。美國(guó)總統(tǒng)的證明?加菲(JamesA.Garfield;1831?1881)?1881年
【總結(jié)】第一章勾股定理3勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?B立體圖形表面兩點(diǎn)之間的最短距離求立體圖形表面兩點(diǎn)之間的最短距離問題.解決此類問題的依據(jù)是:兩點(diǎn)之間,最短.為此需先將立體圖形的表面展開,將立體圖形轉(zhuǎn)化為圖形;再作兩點(diǎn)之間的,構(gòu)造直角三角形;最后通過
2025-06-20 12:13
2025-06-18 12:27
【總結(jié)】勾股定理的應(yīng)用學(xué)習(xí)目標(biāo)1.明確解決路線最短問題應(yīng)轉(zhuǎn)化為“在同一平面內(nèi),兩點(diǎn)之間線段最短”.2.掌握構(gòu)造直角三角形,運(yùn)用勾股定理求線段的長(zhǎng).課前預(yù)習(xí)1.已知三角形的三邊長(zhǎng)分別為5,12,13,則此三角形的面積為.2.有一組勾股數(shù),其中兩個(gè)為8和15,那么第三個(gè)為.
【總結(jié)】勾股定理第一章一個(gè)直角三角形的直角邊長(zhǎng)分別是3和4,你知道它的斜邊長(zhǎng)是多少嗎?要解決這個(gè)問題,就用到了我們即將要學(xué)習(xí)的——勾股定理.勾股世界我國(guó)是最早了解勾股定理的國(guó)家之一.早在三多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角三角形,如果勾等于三,股等于四,那么弦就等于五.即“勾三、股四、弦
2024-11-25 22:42