【總結(jié)】本章中考演練1.(上海中考)下列對二次函數(shù)y=x2-x的圖象的描述,正確的是(C)y軸2.(瀘州中考)已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時,y隨x的增大而增大,且-2≤x≤1時,y的
2025-06-12 00:36
【總結(jié)】第二章二次函數(shù)知識點1用一般式(三點式)確定二次函數(shù)表達(dá)式(1,0),(2,0)和(0,2)三點的二次函數(shù)的表達(dá)式是(D)=2x2+x+2=x2+3x+2=x2-2x+3=x2-3x+2y軸交點的縱坐標(biāo)為1,且經(jīng)過點(2,5)和(-2,13),求這個二次函數(shù)的表達(dá)式.
2025-06-18 00:27
【總結(jié)】第二章二次函數(shù)本專題包括二次函數(shù)的圖象及性質(zhì)的簡單應(yīng)用、二次函數(shù)圖象上點的坐標(biāo)特點、二次函數(shù)圖象的平移變換等內(nèi)容,屬于中考熱點問題,熟練掌握二次函數(shù)的圖象及性質(zhì)、對稱軸、頂點坐標(biāo)、二次函數(shù)的最值等知識點是解題的關(guān)鍵.類型1二次函數(shù)的圖象及應(yīng)用y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①a0;②該函數(shù)的圖象關(guān)
【總結(jié)】◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎
2025-06-12 12:35
【總結(jié)】3確定二次函數(shù)的表達(dá)式【基礎(chǔ)梳理】確定二次函數(shù)表達(dá)式的一般方法已知條件選用表達(dá)式的形式頂點和另一點的坐標(biāo)_______二次函數(shù)各項系數(shù)中的一個和兩點的坐標(biāo)_______三個點的坐標(biāo)_______頂點式一般式一般式【自我診斷】1.(1)確定二次函數(shù)的表達(dá)式一般需要三個條件.(
2025-06-14 06:48
【總結(jié)】3確定二次函數(shù)的表達(dá)式..二次函數(shù)解析式有哪幾種表達(dá)方式?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k如何求二次函數(shù)的解析式?已知二次函數(shù)圖象上三個點的坐標(biāo),可用待定系數(shù)法求其解析式.交點式:y=a(x-x1)(x-x2)解析:設(shè)所求的二次函數(shù)為y=ax2+bx+c,由條件得:
2025-06-15 03:00
2025-06-15 02:54
2025-06-12 13:43
【總結(jié)】第二章二次函數(shù)知識點1二次函數(shù)與一元二次方程的關(guān)系1.(陜西中考)下列關(guān)于二次函數(shù)y=ax2-2ax+1(a1)的圖象與x軸交點的判斷,正確的是(D),且它位于y軸右側(cè),且它們均位于y軸左側(cè),且它們均位于y軸右側(cè)2.(孝感中考)如圖,拋物線y=ax2與直線y=b
2025-06-18 00:42
【總結(jié)】5二次函數(shù)與一元二次方程【基礎(chǔ)梳理】y=ax2+bx+c(a≠0)與一元二次方程ax2+bx+c=0(a≠0)的關(guān)系拋物線y=ax2+bx+c與x軸的交點的個數(shù)一元二次方程ax2+bx+c=0(a≠0)的根的情況2_______________1_______________0_______
2025-06-12 12:32
2025-06-21 02:27
【總結(jié)】5二次函數(shù)與一元二次方程,體會方程與函數(shù)之間的聯(lián)系.x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實數(shù)根、兩個相等的實數(shù)根和沒有實數(shù)根.x軸交點的橫坐標(biāo).ax2+bx+c=0的求根公式是什么?當(dāng)b2-4ac≥0時,當(dāng)b2-4ac0時,方程無實數(shù)根.aacbbx2
2025-06-15 02:55
2025-06-15 03:01
【總結(jié)】第二章二次函數(shù)一、選擇題(每小題4分,共32分)(C)=2x+1=ax2-2x+1=x2+2=2x-1k為任意實數(shù),則拋物線y=-2(x-k)2+k的頂點在(A)y=x上y=-x上3.(寧夏中考)已知a≠0,在同一直角坐標(biāo)系中,函數(shù)y=ax與y=ax2的