【總結】《三角函數(shù)》復習教案【知識網(wǎng)絡】任意角的概念弧長公式角度制與弧度制同角三角函數(shù)的基本關系式誘導公式計算與化簡證明恒等式任意角的三角函數(shù)三角函數(shù)的圖像和性質已知三角函數(shù)值求角圖像和性質和角公式倍角公式差角公式應用應用應用應用應用應用應用
2025-04-16 12:49
【總結】一、高中三角函數(shù)公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式ta
2025-07-22 21:38
【總結】函數(shù)、三角函數(shù)、三角恒等變換重要公式1.=;=;2、當為奇數(shù)時,;當為偶數(shù)時,.3、⑴;?、?;4、運算性質:⑴;⑵;⑶.5、指數(shù)函數(shù)解析式:6、指數(shù)函數(shù)性質:圖象性質(1)定義域:R(2)值域:(0,+∞)(3)過定點(0,1),即x=0時,y=1(4)在R上是增函數(shù)(4)在R上是
2025-07-25 05:18
【總結】定義同角三角函數(shù)的基本關系圖像性質單位圓與三角函數(shù)線誘導公式Cα±βSα±β、Tα±βy=asin+bcosα的最值形如y=Asin(ωx+φ)+B圖像萬能公式和差化積公式積化和差公式Sα/2=Cα/2=Tα/2=S2α=C2α=T2α=
2025-07-22 02:27
【總結】三角函數(shù)三角恒等變換專題復習專題突破高中數(shù)學組:趙雪剛知識層面:熟練掌握兩角和與差的正弦、余弦、正切公式、二倍角公式及其變形使用;思想層面:緊抓三角函數(shù)的三個不同:“名稱不同”、“角度不同”、“次方不同”采用:
2024-09-29 17:21
【總結】浙江省文成中學朱德暖2020年2月27日y=sinxy=cosxy=Asin(wx+j)y=tgxy=ctgx????????-?-??-??-??一、正、余弦函數(shù)的圖象與性質三角函數(shù)性質圖象定
2024-11-09 22:49
【總結】.......解直角三角形的應用復習 1.校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載.某中學數(shù)學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CD與l垂
2025-06-22 19:50
【總結】山東省各地市2012年高考數(shù)學(理科)最新試題分類大匯編:第3部分:三角函數(shù)(2)一、選擇題【山東省萊州一中2012屆高三第一次質檢理】,下列判斷正確的是()A.,有一解. B.,有兩解.C.,有兩解. D.,無解.【答案】A【山東省萊州一中2012屆高三第一次質檢理】′的圖象向左平移個單位,得到函數(shù)的圖象,則是()A.
2025-08-04 13:08
【總結】高三備課組三角函數(shù)的求值高考要求三角函數(shù)式的化簡和求值是高考考查的重點內(nèi)容之一通過本節(jié)的學習使考生掌握化簡和求值問題的解題規(guī)律和途徑,特別是要掌握化簡和求值的一些常規(guī)技巧,以優(yōu)化我們的解題效果,做到事半功倍.知識整合:1、熟記三角函數(shù)有關公式:同角三角函數(shù)關系,誘導公式
2024-11-10 00:29
【總結】三角函數(shù)公式誘導公式口訣“奇變偶不變,符號看象限”意義:k×π/2±a(k∈z)的三角函數(shù)值.(1)當k為偶數(shù)時,等于α的同名三角函數(shù)值,前面加上一個把α看作銳角時原三角函數(shù)值的符號; (2)當k為奇數(shù)時,等于α的異名三角函數(shù)值,前面加上一個把
2025-07-23 20:29
【總結】3eud教育網(wǎng)百萬教學資源,完全免費,無須注冊,天天更新!3eud教育網(wǎng)教學資源集散地??赡苁亲畲蟮拿赓M教育資源網(wǎng)!一、選擇題1.若角0600的終邊上有一點??a,4?,則a的值是()A.34B.34?C.34?D.32.函數(shù)xxxxxxytantancoscoss
2025-07-24 11:54
【總結】《三角函數(shù)》說課稿 《三角函數(shù)》說課稿1 1、教學目標: 一、借助單位圓理解任意角的三角函數(shù)的定義。 二、根據(jù)三角函數(shù)的定義,能夠判斷三角函數(shù)值的符號。 ...
2024-12-06 00:31
【總結】三角函數(shù)專題一、方法總結:。(1)注意隱含條件的應用:1=cos2x+sin2x。(2)角的配湊。α=(α+β)-β,β=-等。(3)升冪與降冪:主要用2倍角的余弦公式。(4)化弦(切)法,用正弦定理或余弦定理。(5)引入輔助角。asinθ+bcosθ=sin(θ+),這里輔助角所在象限由a、b的符號確定,角的值由tan=確定。。(1)發(fā)現(xiàn)差異:觀察角、函
2025-07-25 02:58
【總結】三角函數(shù)的誘導公式(1)山陽職教中心張燕三角函數(shù)的定義:設α終邊上任一點P的坐標是P(x,y),它與原點的距離是r(r>0)復習sincostanyrxryx??????Ox?(,)Pxy?y1r?當時
2025-07-23 20:26
【總結】編者:衡南縣第五中學龍詩春643、三角函數(shù)、三角恒等變換、解三角形【考綱要求】1.任意角的概念、弧度制:①了解任意角的概念。②了解弧度制的概念,能進行弧度與角度的互化。2.三角函數(shù):①理解任意角三角函數(shù)(正弦、余弦、正切)的定義。②能利用單位圓中的三角函數(shù)線推導出2?±?,?±?的正弦、余
2025-01-09 10:58