【總結(jié)】任意角銳角直角鈍角平角周角╭╮我們熟知的角:OBA始邊頂點終邊角的定義:平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。逆時針逆時針順時針定義:正角:按逆時針方向旋轉(zhuǎn)形成的角負角:按順時針方向旋轉(zhuǎn)形成的角
2025-06-05 22:09
【總結(jié)】知識網(wǎng)絡(luò)集合集合的含義元素的特征集合的分類集合的表示方法集合間的關(guān)系元素與集合集合與集合集合的運算交集并集補集確定性,互異性,無序性??AB={x|xA且xB}??或AB={x|xAxB}??UCA={x|xU且x
2025-06-05 22:29
【總結(jié)】集合的基本運算(1)并集、交集復習回顧:集合(數(shù)集)的數(shù)軸表示集合表示數(shù)軸表示{xa<x<b}。。{xa≤x≤b}..{xa≤x<b}.。{xa<x≤b}.。{xx<a}。{xx≤a}.{xx>b}。{xx≥b}.{xx∈R}數(shù)軸上
2025-06-05 22:17
【總結(jié)】補集???????已學的集合符號一.知識回顧:::A∪B={x|x∈A或x∈B},數(shù)軸法和Venn圖(圖示法).:①A∪A=;②A∪?=;③A∪B=B?.AABA?①A∩A=;②A∩?=;③A∩
【總結(jié)】一般地,我們把研究對象統(tǒng)稱為元素(element),把一些元素組成的總體叫做集合(set)(簡稱為集)⑴確定性⑵互異性⑶無序性相等集合定義:只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合是相等的。下列指定的對象,能構(gòu)成一個集合的是
【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)第一課時x6?yo-?-12?3?4?5?-2?-3?-4?1?正弦、余弦函數(shù)的圖象余弦函數(shù)的圖象正弦函數(shù)的圖象x6?yo-?-12?3?4?5?-2?-3?-4?1?y=cosx=s
2025-06-05 22:16
【總結(jié)】正弦函數(shù)、余弦函數(shù)的圖象sinα、cosα、tanα的圖形表示.想一想?復習回顧sinα、cosα、tanα的圖形表示.oxy11PA想一想?復習回顧sinα、cosα、tanα的圖形表示.oxy11PMA正弦線MP想一想?
2025-06-05 22:30
【總結(jié)】向量的基本概念情境老鼠為什么認為貓是“傻貓”?結(jié)論:貓的速度再快也沒用,因為方向錯了。速度是既有大小又有方向的量50m/s10m/s傻貓(1)定義:既有大小又有方向的量叫做向量.相關(guān)概念:有向線段——帶有方向的線段.有
2025-06-05 22:20
【總結(jié)】向量加法運算及其幾何意義?向量的概念:既有大小又有方向的量叫向量。?向量的表示方法:幾何法:用一條有向線段代數(shù)表示:用a,或用有向線段的起點和終點字母表示?零向量和單位向量:長度為0的向量叫零向量,長度為1個單位長度的向量叫單位向量。?平行向量:
2025-06-05 22:18
【總結(jié)】平面向量基本定理復習a?b???復習:oAPB????ROBOAOP??????????1G1F?創(chuàng)設(shè)情境、提出問題2F1v2vv?(1)力的分解(2)速度的分解怎樣探求這種關(guān)系?之間有什么關(guān)系呢?與么平面內(nèi)的任一向量,那是這一
2025-06-05 22:19
【總結(jié)】集合間的基本關(guān)系復習引入觀察以下幾組集合,并指出每組兩個集合中元素的關(guān)系?①A={1,2,3},B={1,2,3,4,5};②A={x|x>1},B={x|x>-1};③A={四邊形},B={多邊形};子集定義
2025-06-05 22:14
【總結(jié)】平面向量數(shù)量積的坐標表示、模、夾角一.復習回顧:?向量的運算律?運算律有:)()().(2bababa????????abba???.1cbcacba??????).(3??是兩個向量的夾角其中??cos??????baba2、兩平面向量垂直的充要條件是什么?
【總結(jié)】三角函數(shù)的誘導公式??sin)360sin(????k??cos)360cos(????k??tan)360tan(????kZ?k???sin)2sin(??k???cos)2cos(??k???tan)2tan(??kZ?k復習引入:誘導公式一(終邊相同角公
2025-06-05 22:10
【總結(jié)】平面向量共線的坐標表示平面向量的坐標表示.jyixayxajiyx??使得,、且只有一對實數(shù)向量基本定理可知,有,由平面任作一個向量作為基底,、向量軸方向相等的兩個單位軸、分別取與在平面坐標系內(nèi),我們xOijay復習.).(,)(),(軸上的坐標在叫
【總結(jié)】簡單的三角恒等變換一.復習:二倍角公式:sin22sincos????22cos2cossin?????22tantan21tan?????22cos1???212sin???2()S?2()C?2()T?,,()24R
2025-06-05 22:31