【文章內(nèi)容簡介】
mics equations of the parallel manipulator are derived using Kane method, according to the theory, the active forces are equal to inertial forces, the dynamics statespace equation can be written by τ +G (Θ) = M (Θ) Θ+ V (Θ, Θ) Θ ( 3) B 動力學模型 并聯(lián)機器人的動力學方 程導出凱恩方法,根據(jù)理論,主動力等于慣性力,動態(tài)狀態(tài)空間方程可以寫的 τ +G (Θ) = M (Θ) Θ+ V (Θ, Θ) Θ ( 3) where M (Θ) is the 66 mass matrix, V (Θ, Θ ) is an 61 vector of centrifugal and Coriolis terms, G (Θ) is an 61 vector of gravity terms, τ is a 61 vector of generalized applied forces. 在 M( Θ)是 66質(zhì)量矩陣, V( Θ, Θ)是一個 61向量的離心和科里奧利術(shù)語, G( Θ)是一個 61重力矢量, τ是 61 向量的廣義力。 The applied forces τ is transformed from mechanism actuator forces, which is given by τ= JlT *Fa ( 4) 應用部隊 τ轉(zhuǎn)化機制的執(zhí)行力,這是由 τ= JlT *Fa ( 4) where J l is a Jacobian 66 matrix of transformation between generalized velocity Θ of platform and protraction velocity l of hydraulic cylinders, and Fa is a 61 vector representing cylinder forces. J1是 雅可比矩陣 66之間轉(zhuǎn)換的廣義速度 Θ平臺和牽引速度的液壓缸, Fa是一個 61向量表示氣缸的力量。 The gravity term, G (Θ) , contains gravitational constant g and generalized coordinate Θ , it depends only on Θ , which can be described as G (Θ) = G p [(Juc,ai*Jai) T mu .g+ (J dc,ai .J ai) T . m d .g)] ( 5) 重力, G( Θ),包含引力常數(shù) G和廣義坐標 Θ,只取決于它 Θ,可以描述為 G (Θ) = G p [(Juc,ai*Jai) T mu .g+ (J dc,ai .J ai) T . m d .g)] ( 5) where Gp is upper platform gravity item, G p = m p *(g,0) T , mp is the total mass of upper platform and load, and the 31 gravitational constant vector g = (0,0, g ) T , mu is the mass of piston, md is the mass of hydraulic cylinder, J uc,ai is a Jacobian 33 matrix of velocity transformation between upper joints and the piston center of mass, J dc,ai is a Jacobian 33 matrix of velocity transformation between generalized velocity Θ and the hydraulic cylinder center of mass, and J ai, is is a Jacobian 36 matrix of velocity transformation between generalized velocity and upper joints Gp是上 平臺重力項, G p = m p *(g,0) T ,Mp 是英國總質(zhì)量上平臺和負載,以及 31重力常數(shù) r g = (0,0, g ) T , Mu是 質(zhì)量是活塞, Md 是 液壓缸的質(zhì)量,Juc, ai是一個 3雅可比矩陣之間的轉(zhuǎn)換3速度上和活塞質(zhì)量中心, Jdc, ai是一個33的 雅可比矩陣之間的速度變換廣 義速度 Θ 和液壓缸的質(zhì)心, Jai, is 是 是一個 3雅可比矩陣之間的 6 速度變換廣義速度和上接頭 CONTROL DESIGN 控制設計 In 6DOF hydraulic driven parallel manipulator, PID controller is applied to achieve tracking control of platform extensively, which is called Joint Space (JS) control scheme. 在六自由度液壓驅(qū) 動并聯(lián)機器人, PID控制 可實現(xiàn)跟蹤控制平臺廣泛,這是所謂的聯(lián)合空間 ( JS)控制方案。 The JS uses mechanism inverse kinematics for puting desired cylinder length trajectories from desired Cartesian trajectories, see Fig. 2. JS 利用機構(gòu)逆運動學計算所需的氣缸長度軌跡所需的笛卡爾軌跡,見圖 2。 Figure 2. Joint space control scheme for 6DOF hydraulic Parallel manipulator platform 圖 2。關(guān)節(jié)空間控制方案的六自由度液壓并聯(lián)機器人平臺 The modelbased controller considered the dynamic characteristic of parallel manipulator embedded the forward kinematics, dynamic gravity item and 基于模型的控制器是動態(tài)特性的并聯(lián) 機器人的運動學嵌入,動態(tài)重力項和反 inverse of transfer of servovalve control hydraulic cylinders and inverse of transpose of Jacobian matrix (J l T ) ?1 in inner control loop, see Fig. 3 轉(zhuǎn)移的伺服閥控制液壓缸和逆,轉(zhuǎn)置雅 可比矩陣 (J l T ) ?1在內(nèi)部控制回路中,見圖 3 Figure 3. PD with gravity pensation control scheme for 6DOF hydraulic driven parallel manipulator 圖 3。 PD與 具有重力補償控制方案的六自由度液壓驅(qū)動并聯(lián)機器人 The developed controller is extended to modelbased control scheme allowing tracking of the reference inputs for platform 所設計的控制器擴展模型為基礎的控制方案允許跟蹤參考輸入平臺 Desired position vector of hydraulic cylinders and actual position vector of hydraulic cylinders are used as input mands of the controller, and the controller provides th