【總結】第1章三角函數(shù)三角函數(shù)的圖象和性質函數(shù)y=Asin(ωx+φ)的圖象理解教材新知把握熱點考向應用創(chuàng)新演練考點一考點二考點三知識點一知識點二知識點三在同一坐標系中畫出y
2024-11-18 09:32
【總結】1.函數(shù)y=Asin(ωx+φ)的圖象情景:下表是某地1951—1981年月平均氣溫(華氏):月份123456平均氣溫月份789101112平均氣溫思考:(1)以月份為x軸,以平均氣溫為y軸,描出散點.(2)用正弦曲線去擬合這些數(shù)據(jù).(
2024-12-05 10:16
2024-12-09 03:45
【總結】sin()yAx????問題提出圖象是由函數(shù)的圖象經(jīng)過怎樣的變換而得到的?)sin(???xyxysin?的圖象,可以看作是把正弦曲線上所有的點向左(當>0時)或向右(當<0時)平行移動||個單位長度而得到.)si
2024-11-18 12:17
【總結】函數(shù)y=Asin(ωx+φ)的圖象(二)一、填空題1.已知簡諧運動f(x)=2sin??????π3x+φ(|φ|π2)的圖象經(jīng)過點(0,1),則該簡諧運動的最小正周期T和初相φ分別為:T=________,φ=________.2.函數(shù)圖象的一部分如圖所示,則符合題意的解析是______.①
2024-12-05 10:17
【總結】函數(shù)y=Asin(?x+?)的圖象(一)在物理和工程技術的許多問題中,都要遇到形如y=Asin(ωx+φ)的函數(shù)解析式(其中A,ω,φ是常數(shù))如交流電、振動和波等.引言0?23??22?xxsin2xsin21xsin10001?00
2024-11-17 20:10
【總結】函數(shù)y=Asin(ωx+φ)的圖象(一)選擇題象做以下變換得到的[]圖象
2024-12-02 10:15
【總結】松桃民族中學數(shù)學組李譚斌函數(shù)的圖象(1)sin()yAx????例1,作函數(shù)y=2sinx及y=1/2sinx的簡圖-2246321-1-2-31/2213π/2π/2π2πO-2-1y=1/2sin
2024-11-22 01:59
【總結】課題函數(shù)y=Asin(ωx+φ)的圖象教學目標知識與技能掌握y=sinx與y=Asin(ωx+φ)圖象間的變換關系,并能正確地指出其變換步驟.過程與方法兩種途徑的變換順序不同,其中變換的量也有所不同情感態(tài)度價值觀數(shù)形結合識記結論重點理解y=Asin(ωx+φ)中
2024-12-05 01:56
【總結】sin()yAx????問題提出y=sinx的定義域、值域分別是什么?它有哪些基本性質??y-1xO1π2π3π4π5π6π-2π-3π-4π-5π-6π-π4.、、A是影響函數(shù)圖象形態(tài)的重要參數(shù),對此,我們分別進行
2024-11-17 12:03
【總結】函數(shù)y=Asin(ωx+φ)的圖象學習目標:1.會用“五點法”畫函數(shù)y=Asin(ωx+φ)的圖象.2.能根據(jù)y=Asin(ωx+φ)的部分圖象,確定其解析式.3.了解y=Asin(ωx+φ)的圖象的物理意義,能指出簡諧運動中的振幅、周期、相位、初相.學習重點:函數(shù)y=Asin(ωx+φ)的圖象
【總結】函數(shù)y=Asin(ωx+φ)的圖象學習目標:1.理解y=Asin(ωx+φ)中ω、φ、A對圖象的影響.2.掌握y=sinx與y=Asin(ωx+φ)圖象間的變換關系,并能正確地指出其變換步驟.學習重點:y=Asin(ωx+φ)中ω、φ、A對圖象及性質學習難點:圖象變換一.知識導學
2024-12-05 06:48
【總結】課題函數(shù)y=Asin(ωx+φ)的圖象(2)教學目標知識與技能會用“五點法”畫函數(shù)y=Asin(ωx+φ)的圖象.能根據(jù)y=Asin(ωx+φ)的部分圖象,確定其解析式.過程與方法情感態(tài)度價值觀重點能根據(jù)y=Asin(ωx+
【總結】函數(shù)y=Asin(ωx+φ)的圖象高三備課組內(nèi)容歸納知識精講:⑴一般地,函數(shù)y=Asin(ωx+φ),x∈R(其中A0,ω0)的圖象,可以看作用下面的方法得到:先把正弦曲線上所有的點向左(當φ0時)或向右(當φ0時)平行移動|φ|個單位長度(得y=sin(x+φ)圖),,再把所得各點的橫坐標縮短(當ω1時)或伸長(當
2024-08-25 01:54
【總結】函數(shù)y=Asin(ωx+φ)的圖象1.把y=sinx的圖象向左平移π2個單位,得到的圖象的解析式為()A.y=-cosxB.y=sinx+π2C.y=sinx-π2D.y=cosx解析:y=sinx――→向左平移π2個單位y=sin??????x+π2=cosx