freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高等數(shù)學(xué)同濟(jì)大學(xué)版課程講解11映射與函數(shù)(編輯修改稿)

2025-05-01 05:19 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 177。2,…,如圖18所示. 圖182. 復(fù)合函數(shù)與反函數(shù)(1)復(fù)合函數(shù)定義5 設(shè)函數(shù)的定義域?yàn)?,值域?yàn)?;而函?shù)的定義域?yàn)椋涤驗(yàn)?,則對(duì)任意,通過(guò)有惟一的與對(duì)應(yīng),再通過(guò)又有惟一的與對(duì)應(yīng).這樣,對(duì)任意,通過(guò),有惟一的與之對(duì)應(yīng).因此是的函數(shù),稱這個(gè)函數(shù)為與的復(fù)合函數(shù),記作,稱為中間變量.兩個(gè)函數(shù)的復(fù)合也可推廣到多個(gè)函數(shù)復(fù)合的情形.例如,y=xμ=(a>0且a≠1)可看成由指數(shù)函數(shù)y = au與u=μlogax復(fù)合而成. 例8 設(shè)f(x)=(x≠1),求f(f(f(x)))解 令,則y=f(f(f(x)))是通過(guò)兩個(gè)中間變量w和u復(fù)合而成的復(fù)合函數(shù),因?yàn)?=,x≠;==,x≠,所以 f(f(f(x)))=,x≠1, ,.(2)反函數(shù)定義6 設(shè)A,B為實(shí)數(shù)集,映射f:A→B的逆映射f 1稱為y=f(x)的反函數(shù).即:若對(duì)每個(gè)y∈B,有惟一的x∈A,使y=f(x),則稱x也是y的函數(shù),記作f 1,即x=f 1(y),并稱它為函數(shù)y=f(x)的反函數(shù),而y=f(x)也稱為反函數(shù)x=f 1(y)的直接函數(shù).從幾何上看,函數(shù)y=f(x)與其反函數(shù)x=f 1(y)有同一圖像.但人們習(xí)慣上用x表示自變量,y表示因變量,因此反函數(shù)x=f 1(y).常改寫成y=f 1(x).今后,我們稱y=f 1(x)為y=f(x)的反函數(shù).此時(shí),由于對(duì)應(yīng)關(guān)系f 1未變,只是自變量與因變量交換了記號(hào),因此反函數(shù)y=f 1(x)與直接函數(shù)y=f(x)的圖像關(guān)于直線y=x對(duì)稱,如圖 1 9所示. 圖1 9值得注意的是,并不是所有函數(shù)都存在反函數(shù),例如函數(shù)y=x2的定義域?yàn)椋ā蓿?∞),值域?yàn)椋?,+∞),但對(duì)每一個(gè)y∈(0,+∞),有兩個(gè)x值即x1=和x2=與之對(duì)應(yīng),因此x不是y的函數(shù),從而y=x2不存在反函數(shù).事實(shí)上,由逆映射存在定理知,若f是從到的一一映射,則f才存在反函數(shù)f 1.例9 設(shè)函數(shù)(x≠1),求.解 函數(shù)可看成由y=f(u),u=x+1復(fù)合而成.所求的反函數(shù)可看成由y=f 1(u),u=x+1復(fù)合而成.因?yàn)椤(u)==,u≠0,即 y=,從而,u(y1)=1,u=,所以 y=f 1(u)=,因此 =,x≠0.3. 函數(shù)的幾種特性(1) 函數(shù)的有界性定義7 設(shè)函數(shù)的定義域?yàn)?,?shù)集,若存在某個(gè)常數(shù)(或),使得對(duì)任一,都有(或),則稱函數(shù)在上有上界(或有下界),常數(shù)(或)稱為在上的一個(gè)上界(或下界),否則,稱在上無(wú)上界(或無(wú)下界).若函數(shù)在既有上界又有下界,則稱在上有界,否則,稱在上無(wú)界.易知,函數(shù)在上有界的充要條件是:存在常數(shù)M>0,使得對(duì)任一,都有 .例如,函數(shù)在其定義域(∞,+∞)內(nèi)是有界的,因?yàn)閷?duì)任一x∈(∞,+∞)都有,函數(shù)在(0,1)內(nèi)無(wú)上界,但有下界.從幾何上看,有界函數(shù)的圖像界于直線之間.(2) 函數(shù)的單調(diào)性定義8 設(shè)函數(shù)的定義域?yàn)椋瑪?shù)集,若對(duì)中的任意兩數(shù)x1,x2(x1<x2),恒有 (或),則稱函數(shù)在上是單調(diào)增加(或單調(diào)減少)的.若上述不等式中的不等號(hào)為嚴(yán)格不等號(hào)時(shí),則稱為嚴(yán)格單調(diào)增加(或嚴(yán)格單調(diào)減少)的.單調(diào)增加或單調(diào)減少的函數(shù)統(tǒng)稱為單調(diào)函數(shù);嚴(yán)格單調(diào)增加或嚴(yán)格單調(diào)減少的函數(shù)統(tǒng)稱為嚴(yán)格單調(diào)函數(shù),如圖1-10所示. 圖1-10例如,函數(shù)在其定義域(∞,+∞)內(nèi)是嚴(yán)格單調(diào)增加的;函數(shù)在(0,π)內(nèi)是嚴(yán)格單調(diào)減少的.從幾何上看,若是嚴(yán)格單調(diào)函數(shù),則任意一條平行于x軸的直線與它的圖像最多交于一點(diǎn),因此有反函數(shù).(3) 函數(shù)的奇偶性定義9 設(shè)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(即若,則必有).若對(duì)任意的,都有   ?。ɑ颍?,則稱f(x)是上的奇函數(shù)(或偶函數(shù)).奇函數(shù)的圖像對(duì)稱于坐標(biāo)原點(diǎn),偶函數(shù)的圖像對(duì)稱于y軸,如圖1-11所示. 圖1-11例10 討論函數(shù)f(x)=ln(x+)的奇偶性.解 函數(shù)f(x)的定義域(∞,+∞)是對(duì)稱區(qū)間,因?yàn)閒(x)=ln(x+)=ln()=ln(x+)=f(x)所以,f(x)是(∞,+∞)上的奇函數(shù).(4) 函數(shù)的周期性定義10 設(shè)函數(shù)的定義域?yàn)?,若存在一個(gè)不為零的常數(shù)T,使得對(duì)任意,有(),且,則稱為周期函數(shù),其中使上式成立的常數(shù)T稱為的周期,通常,函數(shù)的周期是指它的最小正周期,即:使上式成立的最小正數(shù)T(如果存在的話).例如,函數(shù)的周期為2π;的周期是π.并不是所有函數(shù)都有最小正周期,例如,狄利克雷函數(shù),任意正有理數(shù)都是它的周期,但此函數(shù)沒(méi)有最小正周期.4. 函數(shù)應(yīng)用舉例例11 火車站收取行李費(fèi)的規(guī)定如下:當(dāng)行李不超過(guò)50千克時(shí),按基本運(yùn)費(fèi)計(jì)算.如從上海到某地每千克以0.15
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1