freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高考必勝高考數(shù)學(xué)必勝秘訣在哪――概念、方法、題型、易誤點及應(yīng)試技巧總結(jié)(編輯修改稿)

2024-11-28 13:51 本頁面
 

【文章內(nèi)容簡介】 比數(shù)列; 若是等比數(shù)列,且公比,則數(shù)列 ,…也是等比數(shù)列。當(dāng),且為偶數(shù)時,數(shù)列 ,…是常數(shù)數(shù)列0,它不是等比數(shù)列. 如(1)已知且,設(shè)數(shù)列滿足,且,則     . (答:);(2)在等比數(shù)列中,為其前n項和,若,則的值為______(答:40)(3)若,則為遞增數(shù)列;若, 則為遞減數(shù)列;若 ,則為遞減數(shù)列;若, 則為遞增數(shù)列;若,則為擺動數(shù)列;若,則為常數(shù)列.(4) 當(dāng)時,這里,但,這是等比數(shù)列前項和公式的一個特征,據(jù)此很容易根據(jù),判斷數(shù)列是否為等比數(shù)列。如若是等比數(shù)列,且,則= (答:-1)(5) .如設(shè)等比數(shù)列的公比為,前項和為,若成等差數(shù)列,則的值為_____(答:-2)(6) 在等比數(shù)列中,當(dāng)項數(shù)為偶數(shù)時,;項數(shù)為奇數(shù)時,.(7)如果數(shù)列既成等差數(shù)列又成等比數(shù)列,那么數(shù)列是非零常數(shù)數(shù)列,故常數(shù)數(shù)列僅是此數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件。如設(shè)數(shù)列的前項和為(), 關(guān)于數(shù)列有下列三個命題:①若,則既是等差數(shù)列又是等比數(shù)列;②若,則是等差數(shù)列;③若,則是等比數(shù)列。這些命題中,真命題的序號是 (答:②③):⑴公式法:①等差數(shù)列通項公式;②等比數(shù)列通項公式。如已知數(shù)列試寫出其一個通項公式:__________(答:)⑵已知(即)求,用作差法:。如①已知的前項和滿足,求(答:);②數(shù)列滿足,求(答:)⑶已知求,用作商法:。如數(shù)列中,對所有的都有,則______(答:)⑷若求用累加法:。如已知數(shù)列滿足,則=________(答:)⑸已知求,用累乘法:。如已知數(shù)列中,前項和,若,求(答:)⑹已知遞推關(guān)系求,用構(gòu)造法(構(gòu)造等差、等比數(shù)列)。特別地,(1)形如、(為常數(shù))的遞推數(shù)列都可以用待定系數(shù)法轉(zhuǎn)化為公比為的等比數(shù)列后,再求。如①已知,求(答:);②已知,求(答:);(2)形如的遞推數(shù)列都可以用倒數(shù)法求通項。如①已知,求(答:);②已知數(shù)列滿足=1,求(答:)注意:(1)用求數(shù)列的通項公式時,你注意到此等式成立的條件了嗎?(,當(dāng)時,);(2)一般地當(dāng)已知條件中含有與的混合關(guān)系時,常需運用關(guān)系式,先將已知條件轉(zhuǎn)化為只含或的關(guān)系式,然后再求解。如數(shù)列滿足,求(答:):(1)公式法:①等差數(shù)列求和公式;②等比數(shù)列求和公式,特別聲明:運用等比數(shù)列求和公式,務(wù)必檢查其公比與1的關(guān)系,必要時需分類討論.;③常用公式:,.如(1)等比數(shù)列的前項和Sn=2n-1,則=_____(答:);(2)計算機是將信息轉(zhuǎn)換成二進制數(shù)進行處理的。二進制即“逢2進1”,如表示二進制數(shù),將它轉(zhuǎn)換成十進制形式是,那么將二進制轉(zhuǎn)換成十進制數(shù)是_______(答:)(2)分組求和法:在直接運用公式法求和有困難時,常將“和式”中“同類項”先合并在一起,再運用公式法求和. 如求:(答:)(3)倒序相加法:若和式中到首尾距離相等的兩項和有其共性或數(shù)列的通項與組合數(shù)相關(guān)聯(lián),則??煽紤]選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數(shù)列前和公式的推導(dǎo)方法). 如①求證:;②已知,則=______(答:)(4)錯位相減法:如果數(shù)列的通項是由一個等差數(shù)列的通項與一個等比數(shù)列的通項相乘構(gòu)成,那么常選用錯位相減法(這也是等比數(shù)列前和公式的推導(dǎo)方法). 如(1)設(shè)為等比數(shù)列,已知,①求數(shù)列的首項和公比;②求數(shù)列的通項公式.(答:①,;②);(2)設(shè)函數(shù),數(shù)列滿足:,①求證:數(shù)列是等比數(shù)列;②令,求函數(shù)在點處的導(dǎo)數(shù),并比較與的大小。(答:①略;②,當(dāng)時,=;當(dāng)時,;當(dāng)時,)(5)裂項相消法:如果數(shù)列的通項可“分裂成兩項差”的形式,且相鄰項分裂后相關(guān)聯(lián),:①; ②;③,;④ ;⑤;⑥.如(1)求和: (答:);(2)在數(shù)列中,且Sn=9,則n=_____(答:99);(6)通項轉(zhuǎn)換法:先對通項進行變形,發(fā)現(xiàn)其內(nèi)在特征,再運用分組求和法求和。如①求數(shù)列14,25,36,…,…前項和= ?。ù穑海虎谇蠛停? (答:)8. “分期付款”、“森林木材”型應(yīng)用問題(1),務(wù)必“卡手指”,細心計算“年限”.對于“森林木材”既增長又砍伐的問題,則常選用“統(tǒng)一法”統(tǒng)一到“最后”解決.(2)利率問題:①單利問題:如零存整取儲蓄(單利)本利和計算模型:若每期存入本金元,每期利率為,則期后本利和為:(等差數(shù)列問題);②復(fù)利問題:按揭貸款的分期等額還款(復(fù)利)模型:若貸款(向銀行借款)元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,分期還清。如果每期利率為(按復(fù)利),那么每期等額還款元應(yīng)滿足:(等比數(shù)列問題).高考數(shù)學(xué)必勝秘訣在哪?――概念、方法、題型、易誤點及應(yīng)試技巧總結(jié)四、三角函數(shù)角的概念的推廣:平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所的圖形。按逆時針方向旋轉(zhuǎn)所形成的角叫正角,按順時針方向旋轉(zhuǎn)所形成的角叫負角,一條射線沒有作任何旋轉(zhuǎn)時,稱它形成一個零角。射線的起始位置稱為始邊,終止位置稱為終邊。象限角的概念:在直角坐標(biāo)系中,使角的頂點與原點重合,角的始邊與軸的非負半軸重合,角的終邊在第幾象限,就說這個角是第幾象限的角。如果角的終邊在坐標(biāo)軸上,就認為這個角不屬于任何象限。3. 終邊相同的角的表示: (1)終邊與終邊相同(的終邊在終邊所在射線上),注意:相等的角的終邊一定相同,且絕對值最小的角的度數(shù)是___,合___弧度。(答:;)(2)終邊與終邊共線(的終邊在終邊所在直線上) .(3)終邊與終邊關(guān)于軸對稱.(4)終邊與終邊關(guān)于軸對稱.(5)終邊與終邊關(guān)于原點對稱.(6)終邊在軸上的角可表示為:;終邊在軸上的角可表示為:;終邊在坐標(biāo)軸上的角可表示為:.如的終邊與的終邊關(guān)于直線對稱,則=____________。(答:)與的終邊關(guān)系:由“兩等分各象限、一二三四”,則是第_____象限角(答:一、三):,扇形面積公式:,1弧度(1rad). 如已知扇形AOB的周長是6cm,該扇形的中心角是1弧度,求該扇形的面積。(答:2)任意角的三角函數(shù)的定義:設(shè)是任意一個角,P是的終邊上的任意一點(異于原點),它與原點的距離是,那么,。三角函數(shù)值只與角的大小有關(guān),而與終邊上點P的位置無關(guān)。如(1)已知角的終邊經(jīng)過點P(5,-12),則的值為__。(答:);(2)設(shè)是第三、四象限角,則的取值范圍是_______(答:(-1,);(3)若,試判斷的符號(答:負):正弦線MP“站在軸上(起點在軸上)”、余弦線OM“躺在軸上(起點是原點)”、正切線AT“站在點處(起點是)”.三角函數(shù)線的重要應(yīng)用是比較三角函數(shù)值的大小和解三角不等式。如(1)若,則的大小關(guān)系為_____(答:);(2)若為銳角,則的大小關(guān)系為_______ (答:);(3)函數(shù)的定義域是_______(答:):30176。45176。60176。0176。90176。180176。270176。15176。75176。010-110-1010022+1002+29. 同角三角函數(shù)的基本關(guān)系式:(1)平方關(guān)系:(2)倒數(shù)關(guān)系:sincsc=1,cossec=1,tancot=1,(3)商數(shù)關(guān)系:同角三角函數(shù)的基本關(guān)系式的主要應(yīng)用是,已知一個角的三角函數(shù)值,求此角的其它三角函數(shù)值。在運用平方關(guān)系解題時,要根據(jù)已知角的范圍和三角函數(shù)的取值,盡可能地壓縮角的范圍,以便進行定號;在具體求三角函數(shù)值時,一般不需用同角三角函數(shù)的基本關(guān)系式,而是先根據(jù)角的范圍確定三角函數(shù)值的符號,再利用解直角三角形求出此三角函數(shù)值的絕對值。如(1)函數(shù)的值的符號為____(答:大于0);(2)若,則使成立的的取值范圍是____(答:);(3)已知,則=____(答:);(4)已知,則=____;=_________(答:;);(5)已知,則等于  A、  B、  C、   D、(答:B);(6)已知,則的值為______(答:-1)。()的本質(zhì)是:奇變偶不變(對而言,指取奇數(shù)或偶數(shù)),符號看象限(看原函數(shù),同時可把看成是銳角).誘導(dǎo)公式的應(yīng)用是求任意角的三角函數(shù)值,其一般步驟:(1)負角變正角,再寫成2k+,;(2)轉(zhuǎn)化為銳角三角函數(shù)。如(1)的值為________(答:);(2)已知,則______,若為第二象限角,則________。(答:;)1兩角和與差的正弦、余弦、正切公式及倍角公式: 如(1)下列各式中,值為的是 A、  B、 C、  D、?。ù穑篊);(2)命題P:,命題Q:,則P是Q的 A、充要條件  B、充分不必要條件   C、必要不充分條件 D、既不充分也不必要條件(答:C);(3)已知,那么的值為____(答:);(4)的值是______(答:4);(5)已知,求的值(用a表示)甲求得的結(jié)果是,乙求得的結(jié)果是,對甲、乙求得的結(jié)果的正確性你的判斷是______(答:甲、乙都對)12. 三角函數(shù)的化簡、計算、證明的恒等變形的基本思路是:一角二名三結(jié)構(gòu)。即首先觀察角與角之間的關(guān)系,注意角的一些常用變式,角的變換是三角函數(shù)變換的核心!第二看函數(shù)名稱之間的關(guān)系,通?!扒谢摇?;第三觀察代數(shù)式的結(jié)構(gòu)特點?;镜募记捎?(1)巧變角(已知角與特殊角的變換、已知角與目標(biāo)角的變換、角與其倍角的變換、兩角與其和差角的變換. 如,,等),如(1)已知,那么的值是_____(答:);(2)已知,且,求的值(答:);(3)已知為銳角,,則與的函數(shù)關(guān)系為______(答:)(2)三角函數(shù)名互化(切割化弦),如(1)求值(答:1);(2)已知,求的值(答:)(3)公式變形使用(。如(1)已知A、B為銳角,且滿足,則=_____(答:);(2)設(shè)中,,則此三角形是____三角形(答:等邊)(4)三角函數(shù)次數(shù)的降升(降冪公式:,與升冪公式:,)。如(1)若,化簡為_____(答:);(2)函數(shù)的單調(diào)遞增區(qū)間為___________(答:)(5)式子結(jié)構(gòu)的轉(zhuǎn)化(對角、函數(shù)名、式子結(jié)構(gòu)化同)。如(1) (答:);(2)求證:;(3)化簡:(答:)(6)常值變換主要指“1”的變換(等),如已知,求(答:).(7)正余弦“三兄妹—”的內(nèi)存聯(lián)系――“知一求二”,如(1)若 ,則 __(答:),特別提醒:這里;(2)若,求的值。(答:);(3)已知,試用表示的值(答:)。1輔助角公式中輔助角的確定:(其中角所在的象限由a, b的符號確定,角的值由確定)在求最值、化簡時起著重要作用。如(1)若方程有實數(shù)解,則的取值范圍是___________.(答:[-2,2]);(2)當(dāng)函數(shù)取得最大值時,的值是______(答:);(3)如果是奇函數(shù),則= (答:-2);(4)求值:________(答:32)1正弦函數(shù)和余弦函數(shù)的圖象:正弦函數(shù)和余弦函數(shù)圖象的作圖方法:五點法:先取橫坐標(biāo)分別為0,的五點,再用光滑的曲線把這五點連接起來,就得到正弦曲線和余弦曲線在一個周期內(nèi)的圖象。1正弦函數(shù)、余弦函數(shù)的性質(zhì):(1)定義域:都是R。(2)值域:都是,對,當(dāng)時,取最大值1;當(dāng)時,取最小值-1;對,當(dāng)時,取最大值1,當(dāng)時,取最小值-1。如(1)若函數(shù)的最大值為,最小值為,則__,_(答:或);(2)函數(shù)()的值域是____(答:[-1, 2]);(3)若,則的最大值和最小值分別是____ 、_____(答:7;-5);(4)函數(shù)的最小值是_____,此時=__________(答:2;);(5)己知,求的變化范圍(答:);(6)若,求的最大、最小值(答:,)。特別提醒:在解含有正余弦函數(shù)的問題時,你深入挖掘正余弦函數(shù)的有界性了嗎?(3)周期性:①、的最小正周期都是2;②和的最小正周期都是。如(1)若,則=___(答:0);(2) 函數(shù)的最小正周期為____(答:);(3) 設(shè)函數(shù),若對任意都有成立,則的最小值為____(答:2)(4)奇偶性與對稱性:正弦函數(shù)是奇函數(shù),對稱中心是,對稱軸是直線;余弦函數(shù)是偶函數(shù),對稱中心是,對稱軸是直線(正(余)弦型函數(shù)的對稱軸為過最高點或最低點且垂直于軸的直線,對稱中心為圖象與軸的交點)。如(1)函數(shù)的奇偶性是______(答:偶函數(shù));(2)已知函數(shù)為常數(shù)),且,則______(答:-5);(3)函數(shù)的圖象的對稱中心和對稱軸分別是__________、____________(答:、);(4)已知為偶函數(shù),求的值。(答:)(5)單調(diào)性:上單調(diào)遞增,在單調(diào)遞減;在上單調(diào)遞減,在上單調(diào)遞增。特別提醒,別忘了! 1形如的函數(shù):(1)幾個物理量:A―振幅;―頻率(周期的倒數(shù));―相位;―初相;(2)函數(shù)表達式的確定:A由最值確定;由周期確定;由圖象上的特殊點確定,如,的圖象如圖所示,則=_____(答:);(3)函數(shù)圖象的畫法:①“五點法”――設(shè),令=0,求出相應(yīng)的值,計算得出五點的坐標(biāo),描點后得出圖象;②圖象變換法:這是作函數(shù)簡圖常用方法。(4)函數(shù)的圖象與圖象間的關(guān)系:①函數(shù)的圖象縱坐標(biāo)不變,橫坐標(biāo)向左(0)或向右(0)平移個單位得的圖象;②函數(shù)圖象的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?,得到函?shù)的圖象;③函數(shù)圖象的橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼腁倍,得到函數(shù)的圖象;④函數(shù)圖象的橫坐標(biāo)不變,縱坐標(biāo)向上()或向下(),得到的圖象。要特別注意,若由得到的圖象,則向左或向右平移應(yīng)平移個單位,如(1)函數(shù)的圖象經(jīng)過怎樣的變換才能得到的圖象?(答:向上平移1個單位得的圖象,再向左平移個單位得的圖象,橫坐標(biāo)擴大到原來的2倍得的圖象,最后將縱坐標(biāo)縮小到原來的即得的圖象);(2) 要得到函數(shù)的圖象,只需把函數(shù)的圖象向___平移____個單位(答:左;);(3)將函數(shù)圖像,按向量平移后得到的函數(shù)圖像關(guān)于原點對稱,這樣的向量是否唯一?若唯一,求出;若不唯一,求出模最小的向量(答:存在但不唯一,模最小的向量);(4)若函數(shù)的圖象與直線有且僅有四個不同的交點,則
點擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1