【總結(jié)】1.立體幾何初步(1)空間幾何體①認(rèn)識(shí)柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu).②能畫出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)用斜二測(cè)法畫出它們的直觀圖.③會(huì)用平行投影與中心
2025-06-16 12:13
【總結(jié)】平面向量與空間向量知識(shí)點(diǎn)對(duì)比內(nèi)容平面向量空間向量定義既有大小,又有方向既有大小,又有方向表示方法(1)用有向線段表示;(2)用或a,b,c表示模向量的長(zhǎng)度,用||或|a|表示零向量長(zhǎng)度為0的向量,記為a單位向量模為1的向量叫做單位向量相等向量長(zhǎng)度相等,方向相同的向量叫做相等向量相反向量長(zhǎng)度相
2025-06-19 22:59
【總結(jié)】預(yù)習(xí)學(xué)案課堂講義課后練習(xí)工具第三章空間向量與立體幾何欄目導(dǎo)引預(yù)習(xí)學(xué)案課堂講義課后練習(xí)工具第三章空間向量與立體幾何欄目導(dǎo)引3.1空間向量及其運(yùn)算預(yù)習(xí)學(xué)案課堂講義課后練習(xí)工具第三章空間向量與立體幾何欄目導(dǎo)引
2025-07-20 07:00
【總結(jié)】aABABaaABaAB平面向量空間向量具有大小和方向的量具有大小和方向的量幾何表示法幾何表示法字母表示法字母表示法向量的大小向量的大小長(zhǎng)度為零的向量長(zhǎng)度為零的向量模為1的向量模為1的向量長(zhǎng)度相等且方向相反的向量長(zhǎng)
2024-11-24 17:38
【總結(jié)】第九章空間向量專題復(fù)習(xí)制作人:焦明輝一復(fù)習(xí)回顧1平行六面體法則:(1)定義:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作(2)共線向量定理:對(duì)于空間任意兩個(gè)向量a、b(b=0),a//b的充要條件是存在實(shí)數(shù)λ使a=λb.(3)推論
2024-11-09 12:28
【總結(jié)】第六節(jié)空間向量知識(shí)提要1.空間向量的概念:在空間,我們把具有和的量叫做向量。2.空間向量的運(yùn)算。定義:與平面向量運(yùn)算一樣,空間向量的加法、減法與數(shù)乘運(yùn)算如下(如圖)。;;運(yùn)算律:⑴加法交換律:⑵加法結(jié)合律:⑶數(shù)乘分配律:3.共線向量。(1)如果表示空間向量的有向線段所在的直線
2025-07-23 04:56
【總結(jié)】空間向量與立體幾何單元測(cè)試題一、選擇題1、若,,是空間任意三個(gè)向量,,下列關(guān)系式中,不成立的是()A.B.C.D.2、給出下列命題①已知,則;②A、B、M、N為空間四點(diǎn),若不構(gòu)成空間的一個(gè)基底,則A、B、M、N共面;③已知,則與任何向量不構(gòu)成空間的一個(gè)基底;④已知是空
2025-03-25 06:42
【總結(jié)】立體幾何中的向量方法—求空間角?立體幾何這一考點(diǎn)在廣東高考試卷中占有很大比例,11年19分12年18分13年24分。這些題目也是我們?nèi)?zhēng)取力求滿分的題目。主要考查三視圖問(wèn)題,點(diǎn)線面位置關(guān)系問(wèn)題,還有就是大題.大題主要有垂直、平行、角度、體積。對(duì)于角度問(wèn)題,一直是一個(gè)難點(diǎn)。大體有兩種求法,一類是傳統(tǒng)方法,一做(找)二證三求,另一種方
【總結(jié)】高中數(shù)學(xué)選修(2-1)空間向量與立體幾何測(cè)試題一、選擇題1.若把空間平行于同一平面且長(zhǎng)度相等的所有非零向量的始點(diǎn)放置在同一點(diǎn),則這些向量的終點(diǎn)構(gòu)成的圖形是( )A.一個(gè)圓 B.一個(gè)點(diǎn) C.半圓 D.平行四邊形答案:A2.在長(zhǎng)方體中,下列關(guān)于的表達(dá)中錯(cuò)誤的一個(gè)是( ?。粒? B.C. D.答案:B3.若為任意向量,,下列等式不一
2025-06-23 03:41
【總結(jié)】《》教案一、教學(xué)目標(biāo):1.知識(shí)目標(biāo):了解向量與平面平行的意義,掌握它們的表示方法。理解共線向量定理、共面向量定理和空間向量分解定理,理解空間任一向量可用空間不共面的三個(gè)已知向量唯一線性表示,會(huì)在簡(jiǎn)單問(wèn)題中選用空間三個(gè)不共面向量作為基底表示其他向量。會(huì)用空間向量的基本定理解決立體幾何中有關(guān)的簡(jiǎn)單問(wèn)題。2.能力目標(biāo):通過(guò)空間向量分解定理的得出過(guò)程,體會(huì)由特殊到一般,由低維到高維的思想
2025-04-17 07:36
【總結(jié)】空間向量知識(shí)點(diǎn)空間向量的有關(guān)概念和公式概念空間向量與平面向量的概念與性質(zhì)相似,只是由二維平面拓展到三維空間如果一個(gè)向量所在直線垂直于一個(gè)平面,則該向量是這個(gè)平面的一個(gè)法向量。坐標(biāo)表示,,.運(yùn)算則,,,,定比分點(diǎn)公式設(shè)點(diǎn)P分有向線段所成的比為λ,即=λ,,,()中點(diǎn)公式:,,三角形重心公式:,,模,,則==;=
2025-04-04 04:29
【總結(jié)】課時(shí)作業(yè)(十四)一、選擇題1.對(duì)于空間中任意三個(gè)向量a,b,2a-b,它們一定是( )A.共面向量 B.共線向量C.不共面向量 D.既不共線也不共面向量【解析】 由共面向量定理易得答案A.【答案】 A2.已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,則一定共線的三點(diǎn)是( )A.A、B、D B.A、B、CC.B、C、D D.
【總結(jié)】空間直角坐標(biāo)系與空間向量一、建立空間直角坐標(biāo)系的幾種方法構(gòu)建原則:遵循對(duì)稱性,盡可能多的讓點(diǎn)落在坐標(biāo)軸上。作法:充分利用圖形中的垂直關(guān)系或構(gòu)造垂直關(guān)系來(lái)建立空間直角坐標(biāo)系.類型舉例如下:(一)用共頂點(diǎn)的互相垂直的三條棱構(gòu)建直角坐標(biāo)系 例1 已知直四棱柱ABCD-A1B1C1D1中,AA1=2,底面ABCD是直角梯形,∠A為直角,AB∥CD,AB=4,AD=2
2025-07-23 13:44
【總結(jié)】模塊六向量代數(shù)與空間解析幾何(一)向量代數(shù)1.理解向量的概念,掌握向量的表示法,會(huì)求向量的模、非零向量的方向余弦和非零向量在軸上的投影。2.掌握向量的線性運(yùn)算(加法運(yùn)算與數(shù)量乘法運(yùn)算),會(huì)求向量的數(shù)量積與向量積。3.會(huì)求兩個(gè)非零向量的夾角,掌握兩個(gè)非零向量平行、垂直的充分必要條件。(二)平面與直線1.會(huì)求平面的點(diǎn)法
2025-01-19 01:01
【總結(jié)】微積分Ⅰ1第七章向量代數(shù)與空間解析幾何§曲面及其方程一、曲面方程的概念二、柱面四、二次曲面三、旋轉(zhuǎn)曲面五、小結(jié)微積分Ⅰ2第七章向量代數(shù)與空間解析幾何水桶的表面、臺(tái)燈的罩子面等.曲面在空間解析幾何中被看成是點(diǎn)的幾何軌跡.1、曲面方程的定義曲面的實(shí)例:
2025-01-19 08:41