【總結(jié)】28NO.《微積分》教案第十章向量代數(shù)與空間解析幾何§空間直角坐標系一、空間點的直角坐標(1)坐標系:公共原點,三條互相垂直的數(shù)軸軸(橫軸),軸(縱軸),軸(豎軸),符合右手規(guī)則。ⅠⅡⅢⅣⅧⅤⅥ點叫做坐標原點,數(shù)軸,,統(tǒng)稱為坐標軸.,,,每一部分稱為一個卦
2025-09-25 14:46
【總結(jié)】解析幾何一、選擇題1.已知兩點A(-3,),B(,-1),則直線AB的斜率是( )A. B.-C. D.-解析:斜率k==-,故選D.答案:D2.已知直線l:ax+y-2-a=0在x軸和y軸上的截距相等,則a的值是( )A.1 B.-1C.-2或-1 D.-2或1解析:①當a=0時,y=2不合題意.②a≠0,x=0時
2025-08-05 16:26
【總結(jié)】模塊六向量代數(shù)與空間解析幾何(一)向量代數(shù)1.理解向量的概念,掌握向量的表示法,會求向量的模、非零向量的方向余弦和非零向量在軸上的投影。2.掌握向量的線性運算(加法運算與數(shù)量乘法運算),會求向量的數(shù)量積與向量積。3.會求兩個非零向量的夾角,掌握兩個非零向量平行、垂直的充分必要條件。(二)平面與直線1.會求平面的點法
2025-01-19 01:01
【總結(jié)】微積分Ⅰ1第七章向量代數(shù)與空間解析幾何§曲面及其方程一、曲面方程的概念二、柱面四、二次曲面三、旋轉(zhuǎn)曲面五、小結(jié)微積分Ⅰ2第七章向量代數(shù)與空間解析幾何水桶的表面、臺燈的罩子面等.曲面在空間解析幾何中被看成是點的幾何軌跡.1、曲面方程的定義曲面的實例:
2025-01-19 08:41
【總結(jié)】精品資源解析幾何練習(xí)題1、對于每個正自然數(shù)n拋物線與軸交于、兩點,以表示該兩點間的距離,則的值是(?。?A、 B、 C、 D、2、橢圓和雙曲線的公共焦點為F1、F2,P是兩曲線的一個交點,則的值是( ) A、 B、 C、 D、3、如右圖ABCD是直角梯形,AB=4,BC=3,AD=2,AD//BC,,一曲線M過C點且曲線上任意一點到A、B的距離之
2025-03-25 07:47
【總結(jié)】練習(xí)10-1 練習(xí)10-2
2025-01-14 14:01
【總結(jié)】第1頁共12頁高等數(shù)學(xué)基礎(chǔ)綜合練習(xí)題解答一.填空題1.函數(shù)4ln(1)xyx???的定義域為12xx??且。??40410121ln1011xxxxxxxx???????????????????????解:且2.
2025-06-03 06:19
【總結(jié)】首頁上頁下頁返回結(jié)束微積分教案中山大學(xué)南方學(xué)院第六章多元函數(shù)微積分首頁上頁下頁返回結(jié)束微積分教案中山大學(xué)南方學(xué)院
2025-10-07 21:08
【總結(jié)】1線性代數(shù)與空間解析幾何哈工大數(shù)學(xué)系代數(shù)與幾何教研室王寶玲2《線性代數(shù)與解析幾何》序言?學(xué)時60學(xué)時,4學(xué)分,共15周課?成績平時:20%,期中:30%,期末:50%.3一、教學(xué)內(nèi)容線性代數(shù)(抽象)—為了解決多變量問
2025-08-01 13:49
【總結(jié)】第一篇:高等數(shù)學(xué)函數(shù)極限連續(xù)練習(xí)題及解析 數(shù)學(xué)任務(wù)——啟動——習(xí)題 1一、選擇題: (1)函數(shù)y=-x+arccosx+1的定義域是() 2(A)x£1;(B)-3£x£1(C)(-3,1)(...
2024-11-08 13:18
【總結(jié)】第一章矢量與坐標§矢量的概念?(1)把空間中一切單位矢量歸結(jié)到共同的始點;(2)把平行于某一平面的一切單位矢量歸結(jié)到共同的始點;(3)把平行于某一直線的一切矢量歸結(jié)到共同的始點;(4)把平行于某一直線
【總結(jié)】高等代數(shù)與解析幾何緒言一、課程介紹(一)代數(shù)與幾何在古代很長很長的時間里,代數(shù)與幾何就象兩條鐵軌并行向前。直到笛卡爾和費爾馬誕生后,二者才實現(xiàn)了歷史的結(jié)合,并獲得快速發(fā)展。(一)代數(shù)與幾何然而,受前蘇聯(lián)追求完美理論體系的影響,高等代數(shù)、解析幾何成為兩門獨立的課程,并與
2025-01-15 22:32
【總結(jié)】1圓錐曲線定義的深層及綜合運用一、橢圓定義的深層運用例1.如圖1,P為橢圓上一動點,為其兩焦點,從的外角的平分線作垂線,垂足為M,將F2P的延長線于N,求M的軌跡方程。圖1解析:易知故在中,則點M的軌跡方程為。二、雙曲線定義的深層運用例2.如圖2,為雙曲線的兩焦點
2025-01-08 20:27
【總結(jié)】解析幾何1.(21)(本小題滿分13分)設(shè),點的坐標為(1,1),點在拋物線上運動,點滿足,經(jīng)過點與軸垂直的直線交拋物線于點,點滿足,求點的軌跡方程。(21)(本小題滿分13分)本題考查直線和拋物線的方程,平面向量的概念,性質(zhì)與運算,動點的軌跡方程等基本知識,考查靈活運用知識探究問題和解決問題的能力,全面考核綜合數(shù)學(xué)素養(yǎng). 解:由知Q,M,P三
2025-08-05 16:39
【總結(jié)】第七章:空間解析幾何向量代數(shù)本章知識點1、幾種常用的曲線。2、曲面極其方程示例。3、空間曲線(直線)極其方程示例。4、二次曲面示例。重點:向量運算、平面及其方程、空間直線及其方程難點:曲面及其方程一、向量概念1、向量的概念既有大小又有方向的量向量的模a零向量二、向量的線性運算
2025-08-27 15:52