【總結(jié)】1一元二次方程的解法第三課時配方法【學(xué)習(xí)目標】1、掌握用配方法解數(shù)字系數(shù)的一元二次方程.2、使學(xué)生掌握配方法的推導(dǎo)過程,熟練地用配方法解一元二次方程。3、在配方法的應(yīng)用過程中體會“轉(zhuǎn)化”的思想,掌握一些轉(zhuǎn)化的技能?!緦W(xué)習(xí)重點】使學(xué)生掌握配方法,解一元二次方程?!緦W(xué)習(xí)難點】把一元二次方程轉(zhuǎn)化為qp
2025-01-07 11:23
【總結(jié)】分解因式法?當一元二次方程的一邊是0,而另一邊易于分解成兩個一次因式的乘積時,我們就可以用分解因式的方法求解.這種用分解因式解一元二次方程的方法稱為分解因式法.我思我進步?老師提示:?分解因式法的條件是:方程左邊易于分解,而右邊等于零;?2.關(guān)鍵是熟練掌握因式分解的知識;?依舊是“如
2025-08-01 17:32
【總結(jié)】用一元二次方程解決問題一元二次方程的應(yīng)用課前參與預(yù)習(xí)內(nèi)容:課本P24-25;課課練P19-21.知識整理:1、列一元二次方程解應(yīng)用題與列一元一次方程解應(yīng)用題一樣也可歸結(jié)為“審、設(shè)、列、解、檢驗、答”六個步驟。2、在列一元二次方程解應(yīng)用題時,對所解得的方程的根一定要檢驗,特別要注意的是它必須符合實際意義。嘗試練習(xí):1、某工廠
2024-12-08 21:49
【總結(jié)】第1課時一元二次方程問題情境一:1、你還記得什么叫做方程嗎?2、什么是一元一次方程?它的一般形式是怎樣的?創(chuàng)設(shè)情境引入新課問題情境二:1、如圖,有一塊矩形鐵皮,長100cm,寬50cm,在它的四個角分別切去一個正方形,然后將四周突出的部分折起,就能制
2024-11-21 21:32
【總結(jié)】用一元二次方程解決問題實際問題數(shù)學(xué)問題數(shù)學(xué)模型(一元二次方程)檢驗類型思路(1)傳播問題(2)單雙循環(huán)問題(3)增長率問題;(4)面積(體積)問題;(5)商品銷售問題(6)運動問題;(7)銀行問題(8)數(shù)學(xué)問題(9)圖標信息類問題(10)工程行程
2025-08-05 10:07
【總結(jié)】第一篇:一元二次方程解法(復(fù)習(xí)課)導(dǎo)學(xué)案 一元二次方程(復(fù)習(xí)課)導(dǎo)學(xué)案 復(fù)習(xí)目標 1.了解一元二次方程的有關(guān)概念。 2.能靈活運用直接開平方法、配方法、公式法、因式分解法解一元二次方程。3.會...
2025-10-19 16:47
【總結(jié)】一.復(fù)習(xí)?我們學(xué)過那些方程???學(xué)習(xí)目標,根據(jù)一元二次方程的一般式,確定各項系數(shù)解決有關(guān)問題解的概念,并能解決相關(guān)問題.有一塊長100cm,寬50cm的鐵皮,在它的四周各減去一個同樣大的正方形,然后制作成一個無蓋的地面積為3600cm
2024-11-21 01:22
【總結(jié)】第二章第二課時:一元二次方程Wjl321制作.一元二次方程及其解法(1)一般形式:ax2+bx+c=0(a≠0).(2)一元二次方程的四種解法:①直接開平方法:形如x2=k(k≥0)的形式均可用此法求解.②配方法:要先化二次項系數(shù)為1,然后方程兩邊同加上一次項系數(shù)的一半的平方,配成左邊是完全平
2025-10-28 18:38
【總結(jié)】一元二次方程?學(xué)習(xí)目標:1.理解一元二次方程的概念;2.掌握一元二次方程的一般形式,正確認識二次項系數(shù)、一次項系數(shù)及常數(shù)項.?學(xué)習(xí)重點:一元二次方程的概念.1.創(chuàng)設(shè)情境,導(dǎo)入新知思考以下問題如何解決:1.要設(shè)計一座高2m的人體雕像,使它的上部(腰以上)與下部(腰以下)的高度比,等于下
2024-11-22 00:49
【總結(jié)】(第二課時)1、自學(xué)P272、什么叫方程的解?3、一元二次方程的根的情況與一元一次方程有什么不同嗎?自學(xué)檢測1、下面哪些數(shù)是方程x2-x-6=0的根?-4-3-2-1012342、你能寫出方程x2-x=
2024-11-21 00:05
【總結(jié)】等號兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程叫做一元二次方程(quadraticequationinoneunknown)一元二次方程的概念特點:①都是整式方程;②只含一個未知數(shù);③未知數(shù)的最高次數(shù)是2.ax2+bx+c
【總結(jié)】一元二次方程的應(yīng)用祁東縣靈官鎮(zhèn)大同市中學(xué)龍貴華【教學(xué)目標】?1、使學(xué)生會用列一元二次方程的方法解決有關(guān)商品的銷售問題。?2、正確解方程并能根據(jù)具體問題的實際意義,檢驗結(jié)果的合理性。?3、通過用一元二次方程解決身邊的實際問題,體會數(shù)學(xué)知識應(yīng)用的價值,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識?!窘虒W(xué)重點】●學(xué)
2024-11-22 02:57
【總結(jié)】一元二次方程合作學(xué)習(xí):列出下列問題中關(guān)于未知數(shù)x的方程:(1)把面積為4平方米的一張紙分割成如圖所示的正方形和長方形兩個部分,求正方形的邊長.設(shè)正方形的邊長為x,可列出方程為______________xxx3(2)據(jù)國家統(tǒng)計局公布的數(shù)據(jù),浙江省2020年全省實現(xiàn)生產(chǎn)總值6700億元,2020年生產(chǎn)總值達920
【總結(jié)】綠苑小區(qū)住宅設(shè)計,準備在每兩幢樓房之間,開辟面積為900平方米的一塊長方形綠地,并且長比寬多10米,那么綠地的長和寬各為多少?設(shè):長方形綠地的寬為x米,xx+10x(x+10)=900x2+10x-900=0由題意得:整理得:學(xué)校圖書館去年年底有圖書5萬冊,預(yù)計到明年年底增加到.求這兩年的年
2024-11-22 01:29
【總結(jié)】一元二次方程復(fù)習(xí)例1將下列方程化為一般形式,并分別指出它們的二次項系數(shù)、一次項系數(shù)和常數(shù)項,并解方程1)2)2()43)(3(????xxx2)(x-2)(x+3)=83)22)2(4???xx例2:關(guān)于x的方程(m2
2025-08-16 00:39