【總結(jié)】相似三角形對應(yīng)角相等,對應(yīng)邊成比例的三角形叫相似三角形.三角形相似判定:,對應(yīng)邊成比例。:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似。1:兩角對應(yīng)相等,兩三角形相似。2:兩邊對應(yīng)成比例且夾角相等,兩三角形相似。
2024-11-09 12:54
【總結(jié)】第三章三角形1認(rèn)識三角形(第3課時)1、三角形的定義是什么,它的邊角有什么關(guān)系?2、什么是線段的中點(diǎn),如何確定線段的中點(diǎn)復(fù)習(xí)在三角形中,連接一個頂點(diǎn)與它對邊中點(diǎn)的線段,叫做這個三角形的中線(median).三角形的“中線”BE=ECBCAE是BC邊上的中線.E
2024-11-28 01:21
【總結(jié)】全等三角形綜合復(fù)習(xí)切記:“有三個角對應(yīng)相等”和“有兩邊及其中一邊的對角對應(yīng)相等”的兩個三角形不一定全等。例1.如圖,四點(diǎn)共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例3.如圖,在中,,。為延長線上一點(diǎn),點(diǎn)在上,,連接和。求證:。例4.如圖,//,//,求證:。例5.如圖,分別是外角和的平分線,它們交于
2025-06-23 18:30
【總結(jié)】第十一章三角形三角形的邊八年級上冊咸寧市咸安區(qū)教育局教研室王格林創(chuàng)設(shè)情景,引入新課提出問題小組合作看了生活中的三角形實例,結(jié)合你以前對三角形的了解,應(yīng)該怎樣給三角形下一定義呢?(讓學(xué)生分組討論,然后讓各組派一個代表發(fā)言)結(jié)合學(xué)生的發(fā)言,辯析如下圖形是不是三角形?傳授新知
2024-08-10 13:28
【總結(jié)】......全等三角形綜合復(fù)習(xí)切記:“有三個角對應(yīng)相等”和“有兩邊及其中一邊的對角對應(yīng)相等”的兩個三角形不一定全等。例1.如圖,四點(diǎn)共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例
2025-06-23 03:58
【總結(jié)】三角形三邊關(guān)系、三角形內(nèi)角與定理三角形三邊關(guān)系、三角形內(nèi)角和定理 定理:三角形兩邊的和大于第三邊?! ⊥普摚喝切蝺蛇叺牟钚∮诘谌叀! ”磉_(dá)式:△ABC中,設(shè)a>b>c 則b-c<a<b+c a-c<b<a+c a-b<c<a+b給出三條線段的長度,判斷它們能否構(gòu)成三角形。 方法(設(shè)a、b、c
2024-08-03 00:01
【總結(jié)】例1在ΔABC中,∠A+∠B=100°,∠C=2∠B.求∠A,∠B,∠C解:在ΔABC中,∠A+∠B=100°所以,∠C=180°-(∠A+∠B)=180°-100°=80&
2024-11-10 22:38
【總結(jié)】第一篇:全等三角形證明寫理由 全等三角形證明 1.已知:AD平分∠BAC,AC=AB+BD,求證:∠B=2∠C 證明:延長AB到,使AE=,連接DE ∵AD平分∠BAC ∴∠EAD=∠CAD...
2024-10-23 07:20
【總結(jié)】第一章三角形的證明等腰三角形第1課時全等三角形與等腰三角形的性質(zhì)1課堂講解?全等三角形?等腰三角形的邊、角性質(zhì)?等腰三角形的“三線合一”性質(zhì)2課時流程逐點(diǎn)導(dǎo)講練課堂小結(jié)作業(yè)提升活動:實踐觀察,認(rèn)識三角形DACB得到這個△A
2024-12-30 00:30
【總結(jié)】第十一章三角形三角形的穩(wěn)定性八年級上冊湖北省咸寧市咸安區(qū)永安中學(xué)黃杰盧洋開(2)下面我們觀察一組圖片,找出它們的共同點(diǎn).(1)工程建筑中經(jīng)常要采用三角形的結(jié)構(gòu),如屋頂鋼架(如圖(1))其中的道理是什么?蓋房子時,在窗框未安裝好之前,木工師傅常常先在窗框上斜釘一根木條(如圖(2)).為什么要這樣做呢?問題1
2024-09-28 13:10
【總結(jié)】(1)認(rèn)識三角形1、什么叫三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.2、頂點(diǎn):用一個大寫字母表示如A、B、C3、邊:邊AB,邊BC,邊AC4、角(內(nèi)角):∠A,∠B,∠C5、三角形記作:△ABCABC6、對角:
2024-12-08 14:08
【總結(jié)】第一篇:三角形說課稿 小班說課稿:認(rèn)識三角形 一、教材分析 本教材選自《幼兒園教育教學(xué)安排意見》小班內(nèi)容,認(rèn)識三角形是幼兒幾何形體教育的內(nèi)容之一,幼兒的幾何形體教育是幼兒數(shù)學(xué)教育的重點(diǎn)內(nèi)容。幼兒...
2024-10-26 08:53
【總結(jié)】等腰三角形林奕娜一、教材分析《等腰三角形》是人教版義務(wù)教育教科書《數(shù)學(xué)》八年級上冊第十三章《軸對稱》第三小節(jié)第一課時的內(nèi)容。等腰三角形是一種特殊的三角形,它除了具有一般三角形的所有性質(zhì)外,還有許多特殊的性質(zhì),因此它比一般三角形應(yīng)用更廣泛。而等腰三角形的特殊性質(zhì)又與它是軸對稱圖形有關(guān)。另外,等腰三角形的性質(zhì)又是研究等邊三角形、證明角相等、線段相等及直線垂直的重要依據(jù)
2025-04-17 08:21
【總結(jié)】第一篇:全等三角形 復(fù)習(xí)提問通過前兩個問題復(fù)習(xí)鞏固上一節(jié)所講的知識,通過問題3引導(dǎo)學(xué)生認(rèn)識到三角形全等是證明角相等、線段相等的重要方法,然后設(shè)疑,如何證明兩個三角形全等?從而引出課題。 活動二:講...
2024-10-21 21:09