【總結】姓名_____________班級____________學號____________分數(shù)_____________一、選擇題1.下列各組數(shù)中,以a,b,c為邊的三角形不是Rt△的是()A、a=,b=2,c=3B、a=7,b=24,c=25C、a=6,b=8,c=10D、a=3,b=4,c=52.四
2024-11-15 17:52
【總結】一、知識點:1、勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。數(shù)學式子:∠C=900?222abc??2、神秘的數(shù)組(勾股定理的逆定理):如果三角形的三邊長a、b、c滿足a2+b2=c2,那么這個三角形是直角三角形.數(shù)學式子:222abc???∠C=9
2024-12-08 21:14
【總結】勾股定理如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2。cabABC∵在Rt△ABC中,∠C=90o,AB=c,AC=b,BC=a,?a2+b2=c2.逆定理如果三角形的三邊長a、b、c滿足a2+b2=
2024-11-06 13:13
【總結】勾股定理在數(shù)學中的應用勾股定理在數(shù)學中的應用探究新知活動1知識準備一個三角形的三邊長分別是15cm,20cm,25cm,則這個三角形的面積是()A.250cm2B.150cm2C.200cm2D.不能確定B[解析]∵152+
2024-11-10 04:24
【總結】1對1個性化教案學生陳桂浩學校年級教師張玉妮授課日期授課時段課題勾股定理的逆定理與應用重點難點1、勾股定理及應用2、用勾股定理證明一個三角形是直角三角形教學步驟及教學內容導入—【知識點回
2025-06-22 03:44
【總結】2022年,世界數(shù)學家大會在北京召開,左圖是此次大會的會標,它標志著中國古代的數(shù)學成就,又像一只轉動著的風車,歡迎來自世界各地的數(shù)學家們.勾股定理(1)——探索勾股定理ABCSA=4SB=4SC=8正方形A、B、C的面積分別是多少?ABCSA=
2025-08-01 17:57
【總結】?喬伯格勾股定理應用+41.如圖,一圓柱高8cm,底面半徑為cm,一只螞蟻從點A爬到點B處吃食,要爬行的最短路程是( )A.6cm B.8cm C.10cm D.12cmC2.如圖,一只螞蟻從長、寬都是4,高是6的長方體紙箱的A點沿紙箱爬到B點,那么它所行的最短路線的長是( ?。?題圖1題圖A.
2025-03-24 13:00
【總結】探索勾股定理(1)數(shù)一數(shù)ABCABC議一議三個正方形A、B、C的面積之間的關系?ABCABC議一議2、三個正方形中間的直角三角形三邊關系是什么?1、三個正方形A、B、C的面積之間的關系?做一做分別以5cm和12cm為直角邊做直角三角形測量斜邊,看看是否還是有以上的規(guī)律?勾股定
2025-07-19 02:54
【總結】THANKS
2024-12-28 01:19
【總結】勾股定理(1)義務教育課程標準實驗教科書浙江版《數(shù)學》八年級上冊abc2020年國際數(shù)學家大會會標思考:如何求會標中陰影部分的面積?直角三角形兩直角邊的平方和等于斜邊的平方勾股定理直角三角形兩直角邊a、b的平方和,等于斜邊c的平方.a2+b2=c2.=c–bba
2025-10-03 17:07
【總結】第一章勾股定理勾股定理的應用情境引入短距離.(重點).(重點,難點)學習目標在A點的小狗,為了盡快吃到B點的香腸,它選擇AB路線,而不選擇ACB路線,難道小狗也懂數(shù)學?CBAAC+CBAB(兩點之間線段最短)情境引入思考:在立體圖
2024-12-28 01:48
【總結】121教學模式數(shù)學八年級科目_________________________潘明明年級_________________________教師____________課前1分鐘交通安全教育數(shù)學
2025-04-16 23:55
【總結】第一篇:說課稿——勾股定理的應用 勾股定理的應用 ——螞蟻怎么走最快(初中數(shù)學八年級) 學情分析:在本節(jié)內容之前,學生已經準確的理解了勾股定理及其逆定理的內容并能運用它們解決一些數(shù)學問題。同時也...
2024-11-05 03:15
【總結】第一篇:勾股定理的應用說課稿 《勾股定理的應用》說課稿 : 本課是華師大版八年級(上)數(shù)學第14章第二節(jié)內容,,,通過實際分析,使學生獲得較為直觀的印象,通過聯(lián)系和比較,,制定教學目標如下:1....
2024-11-04 18:06
【總結】讀一讀:勾股定理,我們把它稱為世界第一定理。它的重要性,通過這一章的學習已深有體驗。首先,勾股定理是數(shù)形結合的最典型的代表。其次,了解勾股定理歷史的同學知道,正是由于勾股定理的發(fā)現(xiàn),導致無理數(shù)的發(fā)現(xiàn),引發(fā)了數(shù)學的第一次危機。勾股定理中的公式是第一個不定方程,有許許多多的數(shù)滿足這個方程,也是有完整解答的最早的不定方程,由此由它引導出各式各樣的不
2024-11-06 19:33