【文章內(nèi)容簡介】
? 似然比檢驗(yàn)是通過比較兩個(gè) 相嵌套 模型的對(duì)數(shù)似然函數(shù)統(tǒng)計(jì)量 G(又稱 Deviance)來進(jìn)行的,其統(tǒng)計(jì)量為: G= GP- GK =- 2ln(LP)+2ln(LK) ? G服從自由度為 KP的 ?2分布。 26 M odel Fit S tatis tic s Criter ion Inter c e pt Onl y Inter c e pt a nd Co v a ria tes A I C 1 2 8 2 9 .2 3 6 1 2 3 0 5 .5 0 3 SC 1 2 8 3 6 .5 3 7 1 2 3 2 0 .1 0 3 2 Log L 1 2 8 2 7 .2 3 6 1 2 3 0 1 .5 0 3 27 似然比檢驗(yàn) ? 檢驗(yàn)變量 X1是否有統(tǒng)計(jì)學(xué)意義 : 模型 1:不考慮 , 2lnL1= 模型 2:考慮 X , 2lnL2= G=2lnL1(2lnL2) L為對(duì)數(shù)似然函數(shù)值 G= = , ?=1, P 說明回歸系數(shù) β 具有統(tǒng)計(jì)學(xué)意義 。 28 2 Wald檢驗(yàn) ? Wald檢驗(yàn)實(shí)際上是比較估計(jì)回歸系數(shù)與 0的差別來進(jìn)行的,其檢驗(yàn)統(tǒng)計(jì)量為: ? Wald的 ?2檢驗(yàn)是 z 的平方 。 22)?(?)?(0?????????????????SESEz29 例 201參數(shù)估計(jì)與 wald檢驗(yàn)結(jié)果 A n a l y s is of M a x im um Li k e l ihood E s tima t e s P a ra m e ter DF E s tima te S tanda rd E rror W a ld Chi S quar e Pr ChiSq Inter c e pt 1 1 .4 1 1 7 0 .0 3 0 6 2 1 3 2 .7 4 1 4 .0 0 0 1 x 1 1 .0 0 3 0 0 .0 4 4 0 5 1 8 . 6 9 5 0 .0 0 0 1 W al d C on f idenc e Int e r v al fo r A d j usted Odd s R atios Eff ec t U nit Es t ima t e 95 % Co nf idence Limi t s x 1. 00 00 2. 72 7 2. 50 1 2. 97 2 30 3 優(yōu)勢比的區(qū)間估計(jì) )( 2/ bSZbe ??31 xpp 003 )1l n( ????回歸方程 32 回歸系數(shù)的解釋 ? 等級(jí)變量:一般以最小等級(jí)或最大等級(jí)作為參考組 , 并按等級(jí)順序依次取為 0, 1,2, … 。 此時(shí) , exp(?)表示 X增加一個(gè)等級(jí)時(shí)的優(yōu)勢比 , exp(k?)表示增加 k個(gè)等級(jí)時(shí)的優(yōu)勢比 。 ? 連續(xù)性變量:表示增加 1(個(gè)計(jì)量單位 )時(shí)的優(yōu)勢比的對(duì)數(shù) 。 33 ? 多分類變量 :啞變量 (dummy variable) ? x= 1時(shí): x1= 0, x2= 0, x3= 0 表示 A型血 ? x= 2時(shí): x1= 1, x2= 0, x3= 0 表示 B型血 ? x= 3時(shí): x1= 0, x2= 1, x3= 0 表示 AB型血 ? x= 4時(shí): x1= 0, x2= 0, x3= 1 表示 O型血 ? exp(?1) 表示 B與 A比之 OR。 ? exp(? 2) 表示 AB與 A比之 OR。 ? exp(?