freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高考數(shù)學(xué)知識點復(fù)習(xí)總結(jié)精華版(編輯修改稿)

2024-10-04 20:20 本頁面
 

【文章內(nèi)容簡介】 面向量 知識要點(1)向量的基本要素:大小和方向.(2)向量的表示:幾何表示法 ;字母表示:a;坐標(biāo)表示法 a=xi+yj=(x,y).(3)向量的長度:即向量的大小,記作|a|.(4)特殊的向量:零向量a=O|a|=O.單位向量aO為單位向量|aO|=1.(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)(6) 相反向量:a=bb=aa+b=0(7)平行向量(共線向量):方向相同或相反的向量,∥.運算類型幾何方法坐標(biāo)方法運算性質(zhì)向量的加法向量的減法三角形法則,數(shù)乘向量,滿足:2.0時, 同向。0時, 異向。=0時, .向量的數(shù)量積是一個數(shù),.2. 、公式(1)平面向量基本定理e1,e2是同一平面內(nèi)兩個不共線的向量,那么,對于這個平面內(nèi)任一向量,有且僅有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2.(2)兩個向量平行的充要條件a∥ba=λb(b≠0)x1y2-x2y1=O.(3)兩個向量垂直的充要條件a⊥bab=Ox1x2+y1y2=O.(4)線段的定比分點公式設(shè)點P分有向線段所成的比為λ,即=λ,則=+ (線段的定比分點的向量公式) (線段定比分點的坐標(biāo)公式)當(dāng)λ=1時,得中點公式:=(+)或 (5)平移公式設(shè)點P(x,y)按向量a=(h,k)平移后得到點P′(x′,y′),則=+a或曲線y=f(x)按向量a=(h,k)平移后所得的曲線的函數(shù)解析式為:y-k=f(x-h)(6)正、余弦定理正弦定理:余弦定理:a2=b2+c2-2bccosA,b2=c2+a2-2cacosB,c2=a2+b2-2abcosC.(7)三角形面積計算公式:設(shè)△ABC的三邊為a,b,c,其高分別為ha,hb,hc,半周長為P,外接圓、內(nèi)切圓的半徑為R,r.①S△=1/2aha=1/2bhb=1/2chc ②S△=Pr ③S△=abc/4R④S△=1/2sinCab=1/2acsinB=1/2cbsinA ⑤S△= [海倫公式] ⑥S△=1/2(b+ca)ra[如下圖]=1/2(b+ac)rc=1/2(a+cb)rb[注]:到三角形三邊的距離相等的點有4個,一個是內(nèi)心,其余3個是旁心.如圖: 圖1中的I為S△ABC的內(nèi)心, S△=Pr 圖2中的I為S△ABC的一個旁心,S△=1/2(b+ca)ra 附:三角形的五個“心”;重心:三角形三條中線交點.外心:三角形三邊垂直平分線相交于一點.內(nèi)心:三角形三內(nèi)角的平分線相交于一點.垂心:三角形三邊上的高相交于一點.旁心:三角形一內(nèi)角的平分線與另兩條內(nèi)角的外角平分線相交一點.⑸已知⊙O是△ABC的內(nèi)切圓,若BC=a,AC=b,AB=c [注:s為△ABC的半周長,即]則:①AE==1/2(b+ca) ②BN==1/2(a+cb) ③FC==1/2(a+bc)綜合上述:由已知得,一個角的鄰邊的切線長,等于半周長減去對邊(如圖4). 特例:已知在Rt△ABC,c為斜邊,則內(nèi)切圓半徑r=(如圖3). ⑹在△ABC中,有下列等式成立.證明:因為所以,所以,結(jié)論!⑺在△ABC中,D是BC上任意一點,則.證明:在△ABCD中,由余弦定理,有①在△ABC中,由余弦定理有②,②代入①,化簡可得,(斯德瓦定理)①若AD是BC上的中線,;②若AD是∠A的平分線,其中為半周長;③若AD是BC上的高,其中為半周長.⑻△ABC的判定:△ABC為直角△∠A + ∠B =<△ABC為鈍角△∠A + ∠B<>△ABC為銳角△∠A + ∠B>附:證明:,得在鈍角△ABC中,⑼平行四邊形對角線定理:對角線的平方和等于四邊的平方和.空間向量1.空間向量的概念:具有大小和方向的量叫做向量注:⑴空間的一個平移就是一個向量⑵向量一般用有向線段表示同向等長的有向線段表示同一或相等的向量⑶空間的兩個向量可用同一平面內(nèi)的兩條有向線段來表示2.空間向量的運算定義:與平面向量運算一樣,空間向量的加法、減法與數(shù)乘向量運算如下運算律:⑴加法交換律:⑵加法結(jié)合律:⑶數(shù)乘分配律:3 共線向量表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量.平行于記作.當(dāng)我們說向量、共線(或//)時,表示、的有向線段所在的直線可能是同一直線,也可能是平行直線.4.共線向量定理及其推論:共線向量定理:空間任意兩個向量、(≠),//的充要條件是存在實數(shù)λ,使=λ.推論:如果為經(jīng)過已知點A且平行于已知非零向量的直線,那么對于任意一點O,點P在直線上的充要條件是存在實數(shù)t滿足等式 .其中向量叫做直線的方向向量.5.向量與平面平行:已知平面和向量,作,如果直線平行于或在內(nèi),那么我們說向量平行于平面,記作:.通常我們把平行于同一平面的向量,叫做共面向量說明:空間任意的兩向量都是共面的6.共面向量定理:如果兩個向量不共線,與向量共面的充要條件是存在實數(shù)使推論:空間一點位于平面內(nèi)的充分必要條件是存在有序?qū)崝?shù)對,使或?qū)臻g任一點,有 ①①式叫做平面的向量表達式7 空間向量基本定理:如果三個向量不共面,那么對空間任一向量,存在一個唯一的有序?qū)崝?shù)組,使推論:設(shè)是不共面的四點,則對空間任一點,都存在唯一的三個有序?qū)崝?shù),使8 空間向量的夾角及其表示:已知兩非零向量,在空間任取一點,作,則叫做向量與的夾角,記作;且規(guī)定,顯然有;若,則稱與互相垂直,記作:.9.向量的模:設(shè),則有向線段的長度叫做向量的長度或模,記作:.10.向量的數(shù)量積: .已知向量和軸,是上與同方向的單位向量,作點在上的射影,作點在上的射影,則叫做向量在軸上或在上的正射影. 可以證明的長度.11.空間向量數(shù)量積的性質(zhì): (1).(2).(3).12.空間向量數(shù)量積運算律:(1).(2)(交換律)(3)(分配律).空間向量的坐標(biāo)運算一.知識回顧:(1)空間向量的坐標(biāo):空間直角坐標(biāo)系的x軸是橫軸(對應(yīng)為橫坐標(biāo)),y軸是縱軸(對應(yīng)為縱軸),z軸是豎軸(對應(yīng)為豎坐標(biāo)).①令=(a1,a2,a3),,則 ∥ (用到常用的向量模與向量之間的轉(zhuǎn)化:)②空間兩點的距離公式:.(2)法向量:若向量所在直線垂直于平面,則稱這個向量垂直于平面,記作,如果那么向量叫做平面的法向量. (3)用向量的常用方法:①利用法向量求點到面的距離定理:如圖,設(shè)n是平面的法向量,AB是平面的一條射線,其中,則點B到平面的距離為.②利用法向量求二面角的平面角定理:設(shè)分別是二面角中平面的法向量,則所成的角就是所求二面角的平面角或其補角大?。ǚ较蛳嗤?,則為補角,反方,則為其夾角).③證直線和平面平行定理:已知直線平面,且CDE三點不共線,則a∥的充要條件是存在有序?qū)崝?shù)對使.(常設(shè)求解若存在即證畢,若不存在,則直線AB與平面相交). 高中數(shù)學(xué)第六章不等式考試內(nèi)容:不等式.不等式的基本性質(zhì).不等式的證明.不等式的解法.含絕對值的不等式.?dāng)?shù)學(xué)探索169。:數(shù)學(xué)探索169。(1)理解不等式的性質(zhì)及其證明.?dāng)?shù)學(xué)探索169。(2)掌握兩個(不擴展到三個)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的定理,并會簡單的應(yīng)用.?dāng)?shù)學(xué)探索169。(3)掌握分析法、綜合法、比較法證明簡單的不等式.?dāng)?shù)學(xué)探索169。(4)掌握簡單不等式的解法.?dāng)?shù)學(xué)探索169。(5)理解不等式│a││b│≤│a+b│≤│a│+│b│167。06. 不 等 式 知識要點1. 不等式的基本概念(1) 不等(等)號的定義:(2) 不等式的分類:絕對不等式;條件不等式;矛盾不等式.(3) 同向不等式與異向不等式.(4) 同解不等式與不等式的同解變形.(1)(對稱性)(2)(傳遞性)(3)(加法單調(diào)性)(4)(同向不等式相加)(5)(異向不等式相減)(6)(7)(乘法單調(diào)性)(8)(同向不等式相乘)(異向不等式相除)(倒數(shù)關(guān)系)(11)(平方法則)(12)(開方法則)(1)(2)(當(dāng)僅當(dāng)a=b時取等號)(3)如果a,b都是正數(shù),那么 (當(dāng)僅當(dāng)a=b時取等號)極值定理:若則:如果P是定值, 那么當(dāng)x=y時,S的值最??; 如果S是定值, 那么當(dāng)x=y時,P的值最大. 利用極值定理求最值的必要條件: 一正、二定、三相等. (當(dāng)僅當(dāng)a=b=c時取等號)(當(dāng)僅當(dāng)a=b時取等號)(7) (1)平均不等式: 如果a,b都是正數(shù),那么 (當(dāng)僅當(dāng)a=b時取等號)即:平方平均≥算術(shù)平均≥幾何平均≥調(diào)和平均(a、b為正數(shù)):特別地,(當(dāng)a = b時,)冪平均不等式:注:例如:.常用不等式的放縮法:①②(2)柯西不等式: (3)琴生不等式(特例)與凸函數(shù)、凹函數(shù)若定義在某區(qū)間上的函數(shù)f(x),對于定義域中任意兩點有則稱f(x)為凸(或凹)函數(shù). 比較法、綜合法、分析法、換元法、反證法、放縮法、構(gòu)造法.(1)整式不等式的解法(根軸法). 步驟:正化,求根,標(biāo)軸,穿線(偶重根打結(jié)),定解.特例① 一元一次不等式axb解的討論;②一元二次不等式ax2+bx+c0(a≠0)解的討論.(2)分式不等式的解法:先移項通分標(biāo)準(zhǔn)化,則(3)無理不等式:轉(zhuǎn)化為有理不等式求解 (4).指數(shù)不等式:轉(zhuǎn)化為代數(shù)不等式(5)對數(shù)不等式:轉(zhuǎn)化為代數(shù)不等式(6)含絕對值不等式應(yīng)用分類討論思想去絕對值; 應(yīng)用數(shù)形思想;應(yīng)用化歸思想等價轉(zhuǎn)化注:常用不等式的解法舉例(x為正數(shù)):① ②類似于,③ 高中數(shù)學(xué)第七章直線和圓的方程考試內(nèi)容:數(shù)學(xué)探索169。,直線方程的點斜式和兩點式.直線方程的一般式.?dāng)?shù)學(xué)探索169。.兩條直線的交角.點到直線的距離.?dāng)?shù)學(xué)探索169。.簡單的線性規(guī)劃問題.?dāng)?shù)學(xué)探索169。.由已知條件列出曲線方程.?dāng)?shù)學(xué)探索169。.圓的參數(shù)方程.?dāng)?shù)學(xué)探索169。:數(shù)學(xué)探索169。(1)理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程.?dāng)?shù)學(xué)探索169。(2)掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系.?dāng)?shù)學(xué)探索169。(3)了解二元一次不等式表示平面區(qū)域.?dāng)?shù)學(xué)探索169。(4)了解線性規(guī)劃的意義,并會簡單的應(yīng)用.?dāng)?shù)學(xué)探索169。(5)了解解析幾何的基本思想,了解坐標(biāo)法.?dāng)?shù)學(xué)探索169。(6)掌握圓的標(biāo)準(zhǔn)方程和一般方程,了解參數(shù)方程的概念。理解圓的參數(shù)方程.167。07. 直線和圓的方程 知識要點一、直線方程.1. 直線的傾斜角:一條直線向上的方向與軸正方向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時,其傾斜角為0,故直線傾斜角的范圍是.注:①當(dāng)或時,直線垂直于軸,它的斜率不存在.②每一條直線都存在惟一的傾斜角,除與軸垂直的直線不存在斜率外,其余每一條直線都有惟一的斜率,并且當(dāng)直線的斜率一定時,其傾斜角也對應(yīng)確定.2. 直線方程的幾種形式:點斜式、截距式、兩點式、斜切式.特別地,當(dāng)直線經(jīng)過兩點,即直線在軸,軸上的截距分別為時,直線方程是:.注:若是一直線的方程,則這條直線的方程是,但若則不是這條線.附:直線系:對于直線的斜截式方程,當(dāng)均為確定的數(shù)值時,它表示一條確定的直線,如果變化時,對應(yīng)的直線也會變化.①當(dāng)為定植,變化時,它們表示過定點(0,)的直線束.②當(dāng)為定值,變化時,它們表示一組平行直線.3. ⑴兩條直線平行:∥兩條直線平行的條件是:①和是兩條不重合的直線. ②在和的斜率都存在的前提下得到的. 因此,應(yīng)特別注意,抽掉或忽視其中任一個“前提”都會導(dǎo)致結(jié)論的錯誤.(一般的結(jié)論是:對于兩條直線,它們在軸上的縱截距是,則∥,且或的斜率均不存在,即是平行的必要不充分條件,且)推論:如果兩條直線的傾斜角為則∥. ⑵兩條直線垂直:兩條直線垂直的條件:①設(shè)兩條直線和的斜率分別為和,則有這里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要條件)4. 直線的交角:⑴直線到的角(方向角);直線到的角,是指直線繞交點依逆時針方向旋轉(zhuǎn)到與重合時所轉(zhuǎn)動的角,它的范圍是,當(dāng)時.⑵兩條相交直線與的夾角:兩條相交直線與的夾角,是指由與相交所成的四個角中最小的正角,又稱為和所成的角,它的取值范圍是,當(dāng),則有.5. 過兩直線的交點的直線系方程為參數(shù),不包括在內(nèi))6. 點到直線的距離:⑴點到直線的距離公式:設(shè)點,直線到的距離為,則有.注:
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1