freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中三年級(jí)數(shù)學(xué)_圓_全章教案(編輯修改稿)

2024-10-04 17:59 本頁面
 

【文章內(nèi)容簡介】 接 AD ∵ AB 是⊙ O 的直徑 ∴∠ ADB=90176。即 AD⊥ BC 又∵ AC=AB ∴ BD=CD 三、鞏固練習(xí) 1.教材 P92 思考題. 2.教材 P93 練習(xí). 四、應(yīng)用拓展 例 2. 如圖,已知△ ABC 內(nèi)接于⊙ O,∠ A、∠ B、∠ C 的對邊分別設(shè)為 a, b, c,⊙ O 半徑為 R,求證:sinaA = sinbB = sincC =2R. 分析:要證明 sinaA = sinbB =sincC =2R,只要證明 sinaA =2R, sinbB =2R, sincC =2R,即sinA=2aR , sinB=2bR , sinC=2cR , 因此,十分明顯要在直角三角形中進(jìn)行. 證明:連接 CO 并延長交⊙ O 于 D,連接 DB ∵ CD 是直徑 ∴∠ DBC=90176。 又∵∠ A=∠ D 在 Rt△ DBC 中, sinD=BCDC ,即 2R=sinaA 同理可證: sinbB =2R, sincC =2R ∴ sinaA = sinbB =sincC =2R 15 五、歸納小結(jié)(學(xué)生歸納,老師點(diǎn)評) 本節(jié)課應(yīng)掌握: 1.圓周角的概念; 2.圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等, 都相等這條弧所對的圓心角的一半; 3.半圓(或直徑)所對的圓周角是直角, 90176。的圓周角所對的弦是直徑. 4.應(yīng)用圓 周角的定理及其推導(dǎo)解決一些具體問題. 六、布置作業(yè) 與圓有關(guān)的位置關(guān)系 (第 1 課時(shí) ) 教學(xué)內(nèi)容 1.設(shè)⊙ O 的半徑為 r,點(diǎn) P 到圓心的距離 OP=d,則有:點(diǎn) P 在圓外 ? dr;點(diǎn) P 在圓上 ? d=r;點(diǎn) P 在圓內(nèi) ? dr. 2.不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓. 3.三角形外接圓及三角形的外心的概念. 4. 反證法的證明思路. 教學(xué)目標(biāo) 1.理解并掌握設(shè)⊙ O 的半徑為 r,點(diǎn) P 到圓心的距離 OP=d,則有:點(diǎn) P 在圓外 ? dr;點(diǎn) P 在圓上 ? d=r;點(diǎn) P 在圓內(nèi) ? dr 及其運(yùn)用. 2.理解不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓并掌握它的運(yùn)用. 3.了解三角形的外接圓和三角形外心的概念. 4.了解反證法的證明思想. 復(fù)習(xí)圓的兩種定 理和形成過程,并經(jīng)歷探究一個(gè)點(diǎn)、兩個(gè)點(diǎn)、 三個(gè)點(diǎn)能作圓的結(jié)論及作圖方法,給出不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓.接下去從這三點(diǎn)到圓心的距離逐漸引入點(diǎn) P 到圓心距離與點(diǎn)和圓位置關(guān)系的結(jié)論并運(yùn)用它們解決一些實(shí)際問題. 重難點(diǎn)、關(guān)鍵 1. 重點(diǎn):點(diǎn)和圓的位置關(guān)系的結(jié)論:不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓其它們的運(yùn)用. 2.難點(diǎn):講授反證法的證明思路. 3.關(guān)鍵:由一點(diǎn)、二點(diǎn)、三點(diǎn)、 四點(diǎn)作圓開始導(dǎo)出不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓. 教學(xué)過程 一、復(fù)習(xí)引入 (學(xué) 生活動(dòng))請同學(xué)們口答下面的問題. 16 1.圓的兩種定義是什么? 2.你能至少舉例兩個(gè)說明圓是如何形成的? 3.圓形成后圓上這些點(diǎn)到圓心的距離如何? 4.如果在圓外有一點(diǎn)呢?圓內(nèi)呢?請你畫圖想一想. 老師點(diǎn)評:( 1)在一個(gè)平面內(nèi),線段 OA 繞它固定的一個(gè)端點(diǎn) O 旋轉(zhuǎn)一周, 另一個(gè)端點(diǎn) A 所形成的圖形叫做圓;圓心為 O,半徑為 r 的圓可以看成是所有到定點(diǎn) O 的距離等于定長 r 的點(diǎn)組成的圖形. ( 2)圓規(guī):一個(gè)定點(diǎn),一個(gè)定長畫圓. ( 3)都等于半徑. ( 4)經(jīng)過畫圖可 知,圓外的點(diǎn)到圓心的距離大于半徑; 圓內(nèi)的點(diǎn)到圓心的距離小于半徑. 二、探索新知 由上面的畫圖以及所學(xué)知識(shí),我們可知: 設(shè)⊙ O 的半徑為 r,點(diǎn) P 到圓心的距離為 OP=d 則有:點(diǎn) P 在圓外 ? dr 點(diǎn) P 在圓上 ? d=r 點(diǎn) P 在圓內(nèi) ? dr 反過來,也十分明顯,如果 dr?點(diǎn) P 在圓外;如果 d=r?點(diǎn) P 在圓上;如果 dr?點(diǎn) P 在圓內(nèi). 因此,我們可以得到: 這個(gè)結(jié)論的出現(xiàn),對于我們今后解題、判定點(diǎn) P 是否在圓外、圓上、圓內(nèi)提供了依據(jù). 下面,我們接下去研究確定圓的條件: (學(xué)生活動(dòng))經(jīng)過一點(diǎn)可以作無數(shù)條直線,經(jīng)過二點(diǎn)只能作一條直線,那么,經(jīng)過一點(diǎn)能作幾個(gè)圓?經(jīng)過二點(diǎn)、三點(diǎn)呢?請同學(xué)們按下面要求作圓. ( 1)作 圓,使該圓經(jīng)過已知點(diǎn) A,你能作出幾個(gè)這樣的圓? ( 2)作圓,使該圓經(jīng)過已知點(diǎn) A、 B,你是如何做的?你能作出幾個(gè)這樣的圓?其圓心的分布有什么特點(diǎn)?與線段 AB 有什么關(guān)系?為什么? ( 3)作圓,使該圓經(jīng)過已知點(diǎn) A、 B、 C 三點(diǎn)(其中 A、 B、 C 三點(diǎn)不在同一直線上), 你是如何做的?你能作出幾個(gè)這樣的圓? 老師在黑板上演示: 設(shè)⊙ O 的半徑為 r,點(diǎn) P 到圓的距離為 d, 則有:點(diǎn) P 在圓外 ? dr 點(diǎn) P 在圓上 ? d=r 點(diǎn) P 在圓內(nèi) ? dr 17 ( 1)無數(shù)多個(gè)圓,如圖 1 所示. ( 2)連結(jié) A、 B,作 AB 的垂直平分線,則垂直平分線上的點(diǎn)到 A、 B 的距離都相等,都滿足條件,作出無數(shù)個(gè). 其圓心分布在 AB 的中垂線上, 與線段 AB 互相垂直,如圖 2 所示. A lBA BACEDOGF (1) (2) (3) ( 3)作法:①連接 AB、 BC; ②分別作線段 AB、 BC 的中垂線 DE 和 FG, DE 與 FG 相交于點(diǎn) O; ③以 O 為圓心,以 OA 為半徑作圓,⊙ O 就是所要求作的圓,如圖 3 所示. 在上面的作圖過程中,因?yàn)橹本€ DE 與 FG 只有一個(gè) 交點(diǎn) O,并且點(diǎn) O 到 A、 B、 C 三個(gè)點(diǎn)的距離相等(中垂線上的任一點(diǎn)到兩邊的距離相等),所以經(jīng)過 A、 B、 C 三點(diǎn)可以作一個(gè)圓,并且只能作一個(gè)圓. 即: 不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓. 也就是,經(jīng)過三角形的三個(gè)頂點(diǎn)可以做一個(gè)圓,這個(gè)圓叫做三角形的外接圓. 外接圓的圓心是三角形三條邊垂直平分線的交點(diǎn),叫做這個(gè)三角形的外心. 下面我們來證明:經(jīng)過同一條直線上的三個(gè)點(diǎn)不能作出一個(gè)圓. 證明:如圖,假設(shè)過同一直線 L 上的 A、 B、 C 三點(diǎn)可以作一個(gè)圓,設(shè)這個(gè)圓的圓心為 P,那么點(diǎn) P 既在線段 AB 的垂直平分線 L1,又在線段 BC的垂直平分線 L2, 即點(diǎn) P 為 L1與 L2點(diǎn),而 L1⊥ L, L2⊥ L,這與我們以前所學(xué)的“過一點(diǎn)有且只有一條直線與已知直線垂直”矛盾. 所以,過同一直線上的三點(diǎn)不能作圓. 上面的證明方法與我們前面所學(xué)的證明方法思路不同,它不是直接從命題的已知得出結(jié)論,而是假設(shè)命題的結(jié)論不成立(即假設(shè)過同一直線上的三點(diǎn)可以作一個(gè)圓),由此經(jīng)過推理得出矛盾,由矛盾斷定所作假設(shè)不正確,從而得到命題成立.這種證明方法叫做反證法. 在某些情景下,反證法是很有效的證明方法. 例 1.某地出 土一明代殘破圓形瓷盤,如圖所示.為復(fù)制該瓷盤確定其圓心和半徑,請?jiān)趫D中用直尺和圓規(guī)畫出瓷盤的圓心. l2l1BA CP 18 分析:圓心是一個(gè)點(diǎn),一個(gè)點(diǎn)可以由兩條直線交點(diǎn)而成,因此,只要在殘缺的圓盤上任取兩條線段,作線段的中垂線,交點(diǎn)就是我們所求的圓心. 作法:( 1)在殘缺的圓盤上任取三點(diǎn)連結(jié)成兩條線段; ( 2)作兩線段的中垂線,相交于一點(diǎn). 則 O 就為所求的圓心. 三、鞏固練習(xí) 教材 P100 練習(xí) 4. 五、歸納總結(jié)(學(xué)生總結(jié),老師點(diǎn)評) 本節(jié)課 應(yīng)掌握: 1. 點(diǎn)和圓的位置關(guān)系:設(shè)⊙ O 的半徑為 r,點(diǎn) P 到圓心的距離為 d,則 。.P d rP d rP d r???????? ???點(diǎn) 在圓外點(diǎn) 在圓上點(diǎn) 在圓內(nèi) 2.不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓. 3.三角形外接圓和三角形外心的概念. 4.反證法的證明思想. 與圓有關(guān)的位置關(guān)系 (第 2 課時(shí) ) 教學(xué)內(nèi)容 1.直線和圓相交、割線;直線和圓相切、圓的切線、切點(diǎn); 直線和圓沒有公共點(diǎn)、直線和圓相離等概念. 2.設(shè)⊙ O 的 半徑為 r,直線 L 到圓心 O 的距離為 d 直線 L 和⊙ O 相交 ? dr;直線和⊙ O 相切 ? d=r;直線 L 和⊙ O 相離 ? dr. 3.切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線. 4.切線的性質(zhì)定理:圓的切線垂直于過切點(diǎn)的半徑. 5.應(yīng)用以上的內(nèi)容解答題目. 教學(xué)目標(biāo) ( 1)了解直線和圓的位置關(guān)系的有 關(guān)概念. ( 2)理解設(shè)⊙ O 的半徑為 r,直線 L 到圓心 O 的距離為 d,則有: 直線 L 和⊙ O 相交 ? dr;直線 L 和⊙ O 相切 ? d=r;直線 L 和⊙ O 相離 ? dr. ( 3)理解切線的判定定理:理解切線的性質(zhì)定理并熟練掌握以上內(nèi)容解決一些實(shí)際問題. 復(fù)習(xí)點(diǎn)和圓的位置關(guān)系,引入直線和圓的位置關(guān)系,以直線和圓的位置關(guān)系中的 d=r? 直線和圓相切,講授切線的判定定理和性質(zhì)定理. 19 重難點(diǎn)、關(guān)鍵 1.重點(diǎn):切線的判定定理;切線的性質(zhì)定理及其運(yùn)用它們解決一些具體的題目. 2.難點(diǎn)與關(guān)鍵: 由上節(jié)課點(diǎn)和圓的位置關(guān)系遷移并運(yùn)動(dòng)直線導(dǎo)出直線和圓的位置關(guān)系的三個(gè)對應(yīng)等價(jià). 教學(xué)過程 一、復(fù)習(xí)引入 (老師口答,學(xué)生口答,老師并在黑板上板書)同學(xué)們,我們前一節(jié)課已經(jīng)學(xué)到點(diǎn)和圓的位置關(guān)系.設(shè)⊙ O 的半徑為 r,點(diǎn) P 到圓心的距離 OP=d, (a)rdPO (b)rdPO (c)rdPO 則有:點(diǎn) P 在圓外 ? dr,如圖( a)所示; 點(diǎn) P 在圓上 ? d=r,如圖( b)所示; 點(diǎn) P 在圓內(nèi) ? dr,如圖( c)所示. 二、探索新知 前面我們講了點(diǎn)和圓有這樣的位置關(guān)系,如果這個(gè)點(diǎn) P 改為直線 L 呢?它是否和圓還有這三種的關(guān)系呢? (學(xué)生活動(dòng))固定一個(gè)圓,把三角尺的邊緣運(yùn)動(dòng),如果把這個(gè)邊緣看成一條直線,那么這條直線和圓有幾種位置關(guān)系? (老師口答,學(xué)生口答)直線和圓有三種位置關(guān)系:相交、相切和相離. (老師板書)如圖所示: ll( a ) ( b )相離相切相交( c )l 如圖( a),直線 L 和圓有兩個(gè)公共點(diǎn),這時(shí)我們就說這條直線和圓相交,這條直線叫做圓的割線. 20 .czsx . .BACD 如圖( b),直線和圓有一個(gè)公共點(diǎn),這時(shí)我們說這條直線和圓相切, 這條直線叫做圓的切線,這個(gè)點(diǎn)叫做切點(diǎn). 如圖( c),直線和圓沒有公共點(diǎn),這時(shí)我們說這條直線和圓相離. 我們知道,點(diǎn)到直線 L 的距離是這點(diǎn)向直線作垂線,這點(diǎn)到垂足 D 的距離, 按照這個(gè)定義,作出圓心 O 到 L 的距離的三種情況? (學(xué)生分組活動(dòng)):設(shè)⊙ O 的半徑為 r,圓心到直線 L 的距離為 d, 請模仿點(diǎn)和圓的位置關(guān)系,總結(jié)出什么結(jié)論? 老師點(diǎn)評直線 L 和⊙ O 相交 ? dr,如圖( a)所示; ll( a ) ( b ) ( c )l 直線 L 和⊙ O 相切 ? d=r,如圖( b)所示; 直線 L 和⊙ O 相離 ? dr,如圖( c)所示. 因?yàn)?d=r?直線 L 和⊙ O 相切,這里的 d 是圓心 O 到直線 L 的距離,即垂直,并由 d=r 就可得到 L經(jīng)過半徑 r 的外端,即半徑 OA 的 A 點(diǎn),因此,很明顯的, 我們可以得到切線的判定定理: 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線. (學(xué)生分組討論):根據(jù)上面的 判定定理,如果你要證明一條直線是⊙ O 的切線,你應(yīng)該如何證明? (老師點(diǎn)評):應(yīng)分為兩步:( 1)說明這個(gè)點(diǎn)是圓上的點(diǎn),( 2) 過這點(diǎn)的半徑垂直于直線. 例 1. 如圖,已知 Rt△ ABC 的斜邊 AB=8cm, AC=4cm. ( 1)以點(diǎn) C 為圓心作圓,當(dāng)半徑為多長時(shí),直線 AB 與⊙
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1