【總結(jié)】寶雞文理學(xué)院本科學(xué)年論文論文題目:矩陣秩及其應(yīng)用 學(xué)生姓名: 李前 學(xué)生學(xué)號(hào): 201190014020 專業(yè)名稱:數(shù)學(xué)與應(yīng)用數(shù)學(xué) 指導(dǎo)老師: 楊建宏
2025-06-17 20:11
【總結(jié)】矩陣的合同變換摘要:矩陣的合同變換是高等代數(shù)矩陣?yán)碚撝校窘粨Q。在《高等代數(shù)》里,我們僅討論簡(jiǎn)單而直接的變換,而矩陣的合同變換與矩陣相似變換,二次型等有著諸多相同性質(zhì)和聯(lián)系。關(guān)鍵詞:矩陣秩合同對(duì)角化定義1:如果矩陣A可以經(jīng)過(guò)一系列初等變換變成B,則積A與B等價(jià),記為定義2:設(shè)A,B都是數(shù)域F上的n階方陣,如果存在數(shù)域F上的n階段可逆矩陣P使得,則稱A和B相似
2025-07-24 03:28
【總結(jié)】用矩陣的初等行變換求N個(gè)整數(shù)的最大公因子數(shù)學(xué)系20021112班高興龍指導(dǎo)教師鐵勇摘要:初等變換是高等代數(shù)中重要的內(nèi)容之一,在數(shù)學(xué)學(xué)習(xí)中體現(xiàn)出很大的實(shí)用性。本文在常規(guī)方法(提取公因數(shù)法、分解質(zhì)因數(shù)法等)的基礎(chǔ)上,運(yùn)用最大公因子的理論知識(shí)和矩陣的初等行變換,簡(jiǎn)便有效地求出N個(gè)數(shù)的最大公因子。其意義在于體現(xiàn)這種方法的優(yōu)越性,促進(jìn)此類問題的研究。關(guān)鍵詞:初等行變換;整數(shù)
2025-01-13 14:11
【總結(jié)】編號(hào)2021010109研究類型理論研究分類號(hào)013湖北師范大學(xué)文理學(xué)院學(xué)士學(xué)位論文論文題目:矩陣的秩及其應(yīng)用作者姓名周國(guó)梁指導(dǎo)老師劉偉明所在院系文理學(xué)院專
2025-06-04 04:50
【總結(jié)】學(xué)科分類號(hào)(二級(jí))本科學(xué)生畢業(yè)論文(設(shè)計(jì))題目矩陣的對(duì)角化及其應(yīng)用姓名江小敏學(xué)號(hào)084080217院
【總結(jié)】鞍山師范學(xué)院本科畢業(yè)生畢業(yè)論文開題報(bào)告題目:淺談矩陣的秩及其應(yīng)用系別:數(shù)學(xué)與信息科學(xué)學(xué)院專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)年級(jí):13級(jí)2班姓名:楊笑導(dǎo)師:張立新(一)選題意義1.理論意義:高等代數(shù)作為數(shù)學(xué)專業(yè)基礎(chǔ)課程之一,矩陣?yán)碚撚质撬饕膬?nèi)容,其中矩陣的秩特別重要,它是反映矩陣固有性質(zhì)的一個(gè)重要概念。不管是
2025-01-19 00:24
【總結(jié)】§2初等矩陣一、初等矩陣的概念二、初等矩陣的應(yīng)用1、定義由單位矩陣E經(jīng)過(guò)一次初等變換得到的方陣稱為初等矩陣.三種初等變換對(duì)應(yīng)著三種初等方陣.矩陣的初等變換是矩陣的一種基本運(yùn)算,應(yīng)用廣泛.一、初等矩陣的概念??????行(列)上去.乘某行(列)加到另一以數(shù)乘某行或某
2025-07-25 01:31
2025-01-12 07:20
【總結(jié)】分塊矩陣及其應(yīng)用萬(wàn)毓令(重慶三峽學(xué)院數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院數(shù)學(xué)與應(yīng)用數(shù)學(xué)09級(jí)2班)摘要:在線性方程組的討論中,我們看到,線性方程組的一些重要性質(zhì)反映在它的系數(shù)矩陣和增廣矩陣上,,還有大量的各種各樣的問題也都是提出矩陣的概念..關(guān)鍵詞:分塊矩陣矩陣的分塊矩陣的計(jì)算證明應(yīng)用引言:在已有的相關(guān)文獻(xiàn)中,分塊矩陣的一些應(yīng)用如下:(1)從行列式的性質(zhì)出發(fā),推導(dǎo)出分
2025-01-17 04:34
【總結(jié)】§5初等矩陣一、初等矩陣的概念和簡(jiǎn)單性質(zhì)二、矩陣的等價(jià)一、初等矩陣的概念和簡(jiǎn)單性質(zhì)定義由單位矩陣經(jīng)過(guò)一次初等變換得到的矩陣稱為初等矩陣.E的第I行與第j行交換得到初等矩陣11011(,)11011ijiPijj????
2025-07-23 14:24
【總結(jié)】XXXX大學(xué)本科畢業(yè)論文(設(shè)計(jì))題目:矩陣分解的初等方法學(xué)院:學(xué)生姓名:學(xué)號(hào):專業(yè):年級(jí):2008級(jí)完成日期:2012年5月10日指導(dǎo)教師:
2025-08-20 19:16
【總結(jié)】目錄摘要..............................................................................................................................1Abstract................................................
2024-12-03 18:29
【總結(jié)】快速傅里葉變換的原理及其應(yīng)用摘要:快速傅氏變換(FFT),是離散傅氏變換的快速算法,它是根據(jù)離散傅氏變換的奇、偶、虛、實(shí)等特性,對(duì)離散傅立葉變換的算法進(jìn)行改進(jìn)獲得的。它對(duì)傅氏變換的理論并沒有新的發(fā)現(xiàn),但是對(duì)于在計(jì)算機(jī)系統(tǒng)或者說(shuō)數(shù)字系統(tǒng)中應(yīng)用離散傅立葉變換,可以說(shuō)是進(jìn)了一大步。 傅里葉變換的理論與方法在“數(shù)理方程”、“線性系統(tǒng)分析”、“信號(hào)處理、仿真”等很多學(xué)科領(lǐng)域都有著廣泛應(yīng)用,由于
2025-06-17 03:33
【總結(jié)】2022年5月28日星期六集成電路原理及應(yīng)用能源工程學(xué)院1阻抗變換器U/I變換器和I/U變換器U/F變換器和F/U變換器精密T/I和T/U變換器D/A轉(zhuǎn)換器A/D轉(zhuǎn)換器第4章集成變換器及其應(yīng)用2022年5月28日星期六集成電路原理及應(yīng)用能源工程
2025-04-30 13:59
【總結(jié)】第五節(jié)矩陣的初等變換及初等矩陣定義1下面三種變換稱為矩陣的初等行變換:??);記作兩行對(duì)調(diào)兩行(對(duì)調(diào)jirrji?,,1??;02乘以某一行的所有元素以數(shù)?k)記作行乘(第krkii?,??.3)記作行上倍加到第行的對(duì)應(yīng)的元素上去(第倍加到另一行把某一行所有元素的jikrrikjk
2024-10-14 17:21