freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

最新高中高考數(shù)學(xué)知識(shí)點(diǎn)(14篇)(編輯修改稿)

2025-08-13 17:08 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 。通過最值產(chǎn)生結(jié)論。應(yīng)注意恒成立與存在性問題的區(qū)別,如對(duì)任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)g(x)≤0的恒成立問題,但對(duì)存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問題,即f(x)min≤g(x)max,應(yīng)特別注意兩函數(shù)中的最大值與最小值的關(guān)系。忽視三視圖中的實(shí)、虛線致誤三視圖是根據(jù)正投影原理進(jìn)行繪制,嚴(yán)格按照“長(zhǎng)對(duì)正,高平齊,寬相等”的規(guī)則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實(shí)線畫出,不可見的輪廓線用虛線畫出,這一點(diǎn)很容易疏忽。面積體積計(jì)算轉(zhuǎn)化不靈活致誤面積、體積的計(jì)算既需要學(xué)生有扎實(shí)的基礎(chǔ)知識(shí),又要用到一些重要的思想方法。(1)還臺(tái)為錐的思想:這是處理臺(tái)體時(shí)常用的思想方法。(2)割補(bǔ)法:求不規(guī)則圖形面積或幾何體體積時(shí)常用。(3)等積變換法:充分利用三棱錐的任意一個(gè)面都可作為底面的特點(diǎn),靈活求解三棱錐的體積。(4)截面法:尤其是關(guān)于旋轉(zhuǎn)體及與旋轉(zhuǎn)體有關(guān)的組合問題,常畫出軸截面進(jìn)行分析求解。隨意推廣平面幾何中結(jié)論致誤平面幾何中有些概念和性質(zhì),“過直線外一點(diǎn)只能作一條直線與已知直線垂直”“垂直于同一條直線的兩條直線平行”等性質(zhì)在空間中就不成立。對(duì)折疊與展開問題認(rèn)識(shí)不清致誤折疊與展開是立體幾何中的常用思想方法,此類問題注意折疊或展開過程中平面圖形與空間圖形中的變量與不變量,不僅要注意哪些變了,哪些沒變,還要注意位置關(guān)系的變化。點(diǎn)、線、面位置關(guān)系不清致誤關(guān)于空間點(diǎn)、線、面位置關(guān)系的組合判斷類試題是高考全面考查考生對(duì)空間位置關(guān)系的判定和性質(zhì)掌握程度的理想題型,歷來(lái)受到命題者的青睞,解決這類問題的基本思路有兩個(gè):一是逐個(gè)尋找反例作出否定的判斷或逐個(gè)進(jìn)行邏輯證明作出肯定的判斷。二是結(jié)合長(zhǎng)方體模型或?qū)嶋H空間位置(如課桌、教室)作出判斷,但要注意定理應(yīng)用準(zhǔn)確、考慮問題全面細(xì)致。忽視斜率不存在致誤在解決兩直線平行的相關(guān)問題時(shí),若利用l1∥l2?k1=k2來(lái)求解,則要注意其前提條件是兩直線不重合且斜率存在。如果忽略k1,k2不存在的情況,就會(huì)導(dǎo)致錯(cuò)解。這類問題也可以利用如下的結(jié)論求解,即直線l1:a1x+b1y+c1=0與l2:a2x+b2y+c2=0平行的必要條件是a1b2a2b1=0,在求出具體數(shù)值后代入檢驗(yàn),看看兩條直線是不是重合從而確定問題的答案。對(duì)于解決兩直線垂直的相關(guān)問題時(shí)也有類似的情況。利用l1⊥l2?k1k2=1時(shí),要注意其前提條件是k1與k2必須同時(shí)存在。利用直線l1:a1x+b1y+c1=0與l2:a2x+b2y+c2=0垂直的充要條忽視零截距致誤解決有關(guān)直線的截距問題時(shí)應(yīng)注意兩點(diǎn):一是求解時(shí)一定不要忽略截距為零這種特殊情況。二是要明確截距為零的直線不能寫成截距式。因此解決這類問題時(shí)要進(jìn)行分類討論,不要漏掉截距為零時(shí)的情況。忽視圓錐曲線定義中條件致誤利用橢圓、雙曲線的定義解題時(shí),要注意兩種曲線的定義形式及其限制條件。如在雙曲線的定義中,有兩點(diǎn)是缺一不可的:其一,絕對(duì)值。其二,2a|f1f2|。如果不滿足第一個(gè)條件,動(dòng)點(diǎn)到兩定點(diǎn)的距離之差為常數(shù),而不是差的絕對(duì)值為常數(shù),那么其軌跡只能是雙曲線的一支。誤判直線與圓錐曲線位置關(guān)系過定點(diǎn)的直線與雙曲線的位置關(guān)系問題,基本的解決思路有兩個(gè):一是利用一元二次方程的判別式來(lái)確定,但一定要注意,利用判別式的前提是二次項(xiàng)系數(shù)不為零,當(dāng)二次項(xiàng)系數(shù)為零時(shí),直線與雙曲線的漸近線平行(或重合),也就是直線與雙曲線最多只有一個(gè)交點(diǎn)。二是利用數(shù)形結(jié)合的思想,畫出圖形,根據(jù)圖形判斷直線和雙曲線各種位置關(guān)系。在直線與圓錐曲線的位置關(guān)系中,拋物線和雙曲線都有特殊情況,在解題時(shí)要注意,不要忘記其特殊性。兩個(gè)計(jì)數(shù)原理不清致誤分步加法計(jì)數(shù)原理與分類乘法計(jì)數(shù)原理是解決排列組合問題最基本的原理,故理解“分類用加、分步用乘”是解決排列組合問題的前提,在解題時(shí),要分析計(jì)數(shù)對(duì)象的本質(zhì)特征與形成過程,按照事件的結(jié)果來(lái)分類,按照事件的發(fā)生過程來(lái)分步,又要用到分步乘法計(jì)數(shù)原理,一般是先分類,每一類中再分步,注意分類、分步時(shí)要不重復(fù)、不遺漏,對(duì)于“至少、至多”型問題除了可以用分類方法處理外,還可以用間接法處理。排列、組合不分致誤為了簡(jiǎn)化問題和表達(dá)方便,解題時(shí)應(yīng)將具有實(shí)際意義的排列組合問題符號(hào)化、數(shù)學(xué)化,建立適當(dāng)?shù)哪P停湟罁?jù)主要是看元素的組成有沒有順序性,有順序性的是排列問題,無(wú)順序性的是組合問題?;煜?xiàng)系數(shù)與二項(xiàng)式系數(shù)致誤在二項(xiàng)式(a+b)n的展開式中,其通項(xiàng)tr+1=crnanrbr是指展開式的第r+1項(xiàng),因此展開式中第1,2,3,...,n項(xiàng)的二項(xiàng)式系數(shù)分別是c0n,c1n,c2n,...,1n,而不是c1n,c2n,c3n,...,n。而項(xiàng)的系數(shù)是二項(xiàng)式系數(shù)與其他數(shù)字因數(shù)的積。循環(huán)結(jié)束判斷不準(zhǔn)致誤控制循環(huán)結(jié)構(gòu)的是計(jì)數(shù)變量和累加變量的變化規(guī)律以及循環(huán)結(jié)束的條件。在解答這類題目時(shí)首先要弄清楚這兩個(gè)變量的變化規(guī)律,其次要看清楚循環(huán)結(jié)束的條件,這個(gè)條件由輸出要求所決定,看清楚是滿足條件時(shí)結(jié)束還是不滿足條件時(shí)結(jié)束。條件結(jié)構(gòu)對(duì)條件判斷不準(zhǔn)致誤條件結(jié)構(gòu)的程序框圖中對(duì)判斷條件的分類是逐級(jí)進(jìn)行的,其中沒有遺漏也沒有重復(fù),在解題時(shí)對(duì)判斷條件要仔細(xì)辨別,看清楚條件和函數(shù)的對(duì)應(yīng)關(guān)系,對(duì)條件中的數(shù)值不要漏掉也不要重復(fù)了端點(diǎn)值。對(duì)于復(fù)數(shù)a+bi(a,b∈r),a叫做實(shí)部,b叫做虛部。當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a,b∈r)是實(shí)數(shù)a。當(dāng)b≠0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù)。當(dāng)a=0且b≠0時(shí),z=bi叫做純虛數(shù)。解決復(fù)數(shù)概念類試題要仔細(xì)區(qū)分以上概念差別,防止出錯(cuò)。另外,i2=1是實(shí)現(xiàn)實(shí)數(shù)與虛數(shù)互化的橋梁,要適時(shí)進(jìn)行轉(zhuǎn)化,解題時(shí)極易丟掉“”而出錯(cuò)。高中高考數(shù)學(xué)知識(shí)點(diǎn)篇六①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).②正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形.⑶特殊棱錐的頂點(diǎn)在底面的射影位置:①棱錐的側(cè)棱長(zhǎng)均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.②棱錐的側(cè)棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.③棱錐的各側(cè)面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.④棱錐的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.⑤三棱錐有兩組對(duì)棱垂直,則頂點(diǎn)在底面的射影為三角形垂心.⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心.⑦每個(gè)四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑。⑧每個(gè)四面體都有內(nèi)切球,球心是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑.[注]:,且底面是正方形的棱錐是正四棱錐.()(各個(gè)側(cè)面的等腰三角形不知是否全等),兩條對(duì)角線互相垂直,則第三對(duì)角線必然垂直.簡(jiǎn)證:ab⊥cd,ac⊥bdbc⊥,已知?jiǎng)t.,則順次連結(jié)各邊的中點(diǎn)的四邊形一定是矩形.,則順次連結(jié)各邊的中點(diǎn)的四邊是一定是正方形.簡(jiǎn)證:取ac中點(diǎn),則平面90176。易知efgh為平行四邊形,則為正方形.基本事件的定義:一次試驗(yàn)連同其中可能出現(xiàn)的每一個(gè)結(jié)果稱為一個(gè)基本事件。等可能基本事件:若在一次試驗(yàn)中,每個(gè)基本事件發(fā)生的可能性都相同,則稱這些基本事件為等可能基本事件。古典概型:如果一個(gè)隨機(jī)試驗(yàn)滿足:(1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè)。(2)每個(gè)基本事件的發(fā)生都是等可能的。那么,我們稱這個(gè)隨機(jī)試驗(yàn)的概率模型為古典概型.古典概型的概率:如果一次試驗(yàn)的等可能事件有n個(gè),考試技巧,那么,每個(gè)等可能基本事件發(fā)生的概率都是。如果某個(gè)事件a包含了其中m個(gè)等可能基本事件,那么事件a發(fā)生的概率為。古典概型解題步驟:(1)閱讀題目,搜集信息。(2)判斷是否是等可能事件,并用字母表示事件。(3)求出基本事件總數(shù)n和事件a所包含的結(jié)果數(shù)m。(4)用公式求出概率并下結(jié)論。求古典概型的概率的關(guān)鍵:求古典概型的概率的關(guān)鍵是如何確定基本事件總數(shù)及事件a包含的基本事件的個(gè)數(shù)。兩個(gè)復(fù)數(shù)相等的定義:如果兩個(gè)復(fù)數(shù)的實(shí)部和虛部分別相等,那么我們就說這兩個(gè)復(fù)數(shù)相等,即:如果a,b,c,d∈r,那么a+bi=c+dia=c,b=d。特殊地,a,b∈r時(shí),a+bi=0a=0,b=0.復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問題化歸為實(shí)數(shù)問題解決的途徑。復(fù)數(shù)相等特別提醒:一般地,兩個(gè)復(fù)數(shù)只能說相等或不相等,而不能比較大小。如果兩個(gè)復(fù)數(shù)都是實(shí)數(shù),就可以比較大小,也只有當(dāng)兩個(gè)復(fù)數(shù)全是實(shí)數(shù)時(shí)才能比較大小。解復(fù)數(shù)相等問題的方法步驟:(1)把給的復(fù)數(shù)化成復(fù)數(shù)的標(biāo)準(zhǔn)形式。(2)根據(jù)復(fù)數(shù)相等的充要條件解之。復(fù)數(shù)的概念:形如a+bi(a,b∈r)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母c表示。復(fù)數(shù)的表示:復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈r),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實(shí)部,b叫復(fù)數(shù)的虛部。復(fù)數(shù)的幾何意義:(1)復(fù)平面、實(shí)軸、虛軸:點(diǎn)z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈r)可用點(diǎn)z(a,b)表示,這個(gè)建立了直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù)(2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集c和復(fù)平面內(nèi)所有的點(diǎn)所成的集合是一一對(duì)應(yīng)關(guān)系,即這是因?yàn)?,每一個(gè)復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個(gè)點(diǎn)和它對(duì)應(yīng)。反過來(lái),復(fù)平面內(nèi)的每一個(gè)點(diǎn),有惟一的一個(gè)復(fù)數(shù)和它對(duì)應(yīng)。這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。復(fù)數(shù)的模:復(fù)數(shù)z=a+bi(a、b∈r)在復(fù)平面上對(duì)應(yīng)的點(diǎn)z(a,b)到原點(diǎn)的距離叫復(fù)數(shù)的模,記為|z|,即|z|=虛數(shù)單位i:(1)它的平方等于1,即i2=1。(2)實(shí)數(shù)可以與它進(jìn)行四則運(yùn)算,進(jìn)行四則運(yùn)算時(shí),原有加、乘運(yùn)算律仍然成立(3)i與1的關(guān)系:i就是1的一個(gè)平方根,即方程x2=1的一個(gè)根,方程x2=1的另一個(gè)根是i
點(diǎn)擊復(fù)制文檔內(nèi)容
化學(xué)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1