freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

最新勾股定理逆定理教學設計意圖(9篇)(編輯修改稿)

2025-08-03 21:15 本頁面
 

【文章內(nèi)容簡介】 決數(shù)學問題的一般方法。師生行為讓學生在小組內(nèi)共同合作,協(xié)手完成此活動。教師參與此活動,并給學生以提示、啟發(fā)。在本活動中,教師應重點關注學生:①能否積極動手參與;②能否從操作活動中,用數(shù)學語言歸納、猜想出結論;③學生是否有克服困難的勇氣。生:我們不難發(fā)現(xiàn)上圖中,第(1)個結到第(4)個結是3個單位長度即ac=3;同理bc=4,ab=5.因為32+42=52。我們圍成的三角形是直角三角形。生:,6cm,.我們用尺規(guī)作圖的方法作此三角形,經(jīng)過測量后,+62=.再換成三邊分別為4cm,,且也有42+=.是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個直角三角形呢?活動3下面的三組數(shù)分別是一個三角形的三邊長a,b,c5,12,13;7,24,25;8,15,17。(1)這三組效都滿足a2+b2=c2嗎?(2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?設計意圖:本活動通過讓學生按已知數(shù)據(jù)作出三角形,并測量三角形三個內(nèi)角的度數(shù)來進一步獲得一個三角形是直角三角形的有關邊的條件。師生行為:學生進一步以小組為單位,按給出的三組數(shù)作出三角形,從而更加堅信前面猜想出的結論。教師對學生歸納出的結論應給予解釋,我們將在下一節(jié)給出證明.本活動教師應重點關注學生:①對猜想出的結論是否還有疑慮;②能否積極主動的操作,并且很有耐心。生:(1)這三組數(shù)都滿足a2+b2=c2。(2)以每組數(shù)為邊作出的三角形都是直角三角形。師:很好,我們進一步通過實際操作,猜想結論。命題2如果三角形的三邊長a,b,c滿足a2+b2=c2那么這個三角形是直角三角形。同時,我們也進一步明白了古埃及人那樣做的道理.實際上,古代中國人也曾利用相似的方法得到直角,直至科技發(fā)達的今天。勾股定理逆定理教學設計意圖篇五——直角三角形的一種判定方法,體現(xiàn)了數(shù)形結合的思想。,加深了學生對性質(zhì)與判定之間辨證統(tǒng)一關系的認識。3. 完善了知識結構,為后繼學習打下基礎。初中生已經(jīng)具備一定的獨立思考和探索能力,并能在探索過程中形成自已的觀點,能在傾聽別人意見的過程中逐漸完善自已的想法,而且本班學生比較上進,思維活躍,愿意表達自已的見解,有一定的互動互助基礎。:(1)理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。(2)掌握勾股定理的逆定理,并能應用勾股定理的逆定理判定一個三角形是不是直角三角形。(1)通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成過程。(2)通過用三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)形結合方法的應用。(3)通過對勾股定理的逆定理的證明,體會數(shù)形結合方法在問題解決中的作用,并能應用勾股定理的逆定理來解決相關問題。3.情感態(tài)度(1)通過用三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧與辨證統(tǒng)一的關系(2)在探索勾股定理的逆定理的活動中,通過一系列的富有探究性的問題,滲透與他人交流、合作的意識和探究精神。教學重點:勾股定理的逆定理及起應用教學難點:勾股定理的逆定理的證明勾股定理逆定理教學設計意圖篇六(一)、本節(jié)課在教材中的地位作用“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標要求學生必須掌握。(二)、教學目標知識技能:1理解并會證明勾股定理的逆定理;2會應用勾股定理的逆定理判定一個三角形是否為直角三角形;3知道什么叫勾股數(shù),記住一些覺見的勾股數(shù)。過程與方法:通過對勾股定理的逆定理的探索和證明,經(jīng)歷知識的發(fā)生,發(fā)展與形成的過程,體驗“數(shù)形結合”方法的應用。情感、態(tài)度價值觀培養(yǎng)數(shù)學思維以及合情推理意識,感悟勾股定理和逆定理的應用價值。滲透與他人交流、合作的意識和探究精神,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關系。(三)、學情分析:盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據(jù)已知條件構造一個直角三角形,根據(jù)學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣就確定了本節(jié)課的重點、難點。教學重點:勾股定理逆定理的應用教學難點:勾股定理逆定理的證明本節(jié)課的設計原則是:使學生在動手操作的基礎上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結構與幾何知識結構之間筑了一個信息流通渠道,進而達到完善學生的數(shù)學認識結構的目的。(一)復習回顧復習回顧與直角三角形、勾股定理有關的內(nèi)容,建立新舊知識之間的聯(lián)系。(二)創(chuàng)設問題情境一開課我就提出了與本節(jié)課關系密切、學生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結,然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?。這個問題一出現(xiàn)馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發(fā)了學生的興趣,因而全身心地投入到學習中來,創(chuàng)造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數(shù)學就在身邊。(三)學生在教師的指導下嘗試解決問題,總結規(guī)律(包括難點突破)因為幾何來源于現(xiàn)實生活,對初二學生來說選擇適當?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手畫圖在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。這樣設計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手畫出了一個兩直
點擊復制文檔內(nèi)容
合同協(xié)議相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1