freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

最新八年級數(shù)學試卷易錯易錯壓軸勾股定理選擇題專題練習及答案(1)(編輯修改稿)

2025-04-02 03:32 本頁面
 

【文章內容簡介】 2號的面積加上3號的面積,c的面積等于3號的面積加上4號的面積,據此可以求出三個的面積之和.【詳解】利用勾股定理可得: ,∴ 故選B【點睛】本題主要考查勾股定理的應用,熟練掌握相關性質定理是解題關鍵.6.A解析:A【分析】由已知條件可證△CFE≌△AFD,得到DF=EF,利用折疊知AE=AB=8cm,設AF=xcm,則DF=(8x)cm,在Rt△AFD中,利用勾股定理即可求得x的值.【詳解】∵四邊形ABCD是長方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF設AF=xcm,則DF=(8x)cm在Rt△AFD中,AF2=DF2+AD2,AD=6cm,故選擇A.【點睛】此題是翻折問題,利用勾股定理求線段的長度.7.D解析:D【分析】先用已知條件利用SAS的三角形全等的判定定理證出△EAB≌△CAM,之后利用全等三角形的性質定理分別可得,,然后設,繼而可分別求出,所以;易證Rt△ACB≌Rt△DCG(HL),從而得,然后代入所求數(shù)據即可得的值.【詳解】解:∵在△EAB和△CAM中 ,∴△EAB≌△CAM(SAS),∴,∴,∴,設,則,,∴;∵ 在Rt△ACB和Rt△DCG中,Rt△ACB≌Rt△DCG(HL),∴?!啵蔬xD.【點睛】本題主要考查了勾股定理,三角形全等的判定定理和性質定理等知識.8.D解析:D【分析】由等式可分別得到關于a、b、c的等式,從而分別計算得到a、b、c的值,再由的關系,可推導得到△ABC為直角三角形.【詳解】∵又∵ ∴∴ ∴ ∴△ABC為直角三角形故選:D.【點睛】本題考察了平方、二次根式、絕對值和勾股定理逆定理的知識;求解的關鍵是熟練掌握二次根式、絕對值和勾股定理逆定理,從而完成求解.9.C解析:C【分析】根據BD、CE分別是AC、AB邊上的高,推導出;再結合題意,可證明,由此可得,;再經得,從而證明AF⊥AQ;最后由勾股定理得,從而得到,即可得到答案.【詳解】如圖,CE和BD相較于H∵BD、CE分別是AC、AB邊上的高∴, ∴ ∴ ∵ ∴ 又∵BQ=AC且CF=AB∴ ∴,,故B、D結論正確;∵ ∴ ∴∴AF⊥AQ故A結論正確;∵∴ ∵ ∴ ∴ 故選:C.【點睛】本題考查了全等三角形、直角三角形、勾股定理、三角形的高等知識;解題的關鍵是熟練掌握全等三角形、直角三角形、勾股定理、三角形的高的性質,從而完成求解.10.B解析:B【分析】過點C作于點H,根據等腰三角形的性質得到,根據得到,可以證得①是正確的,利用勾股定理求出AG的長,算出三角形ACD的面積證明②是正確的,再根據角度之間的關系證明,得到④是正確的,最后利用勾股定理求出CF的長,得到③是正確的.【詳解】解:如圖,過點C作于點H,∵,∴,∵,∴,∴,∴,故①正確;∵,∴,∴,在中,∴,故②正確;∵,∴,∵,∴,∵,,∴,∴,故④正確;∴,在中,故③正確.故選:B.【點睛】本題考查幾何的綜合證明,解題的關鍵是掌握等腰三角形的性質和判定,勾股定理和三角形的外角和定理.11.A解析:A【分析】先根據角平分線的性質可證CD=DE,從而根據“HL”證明Rt△ACD≌Rt△AED,由DE為AB中線且DE⊥AB,可求AD=BD=3cm ,然后在Rt△BDE中,根據直角三角形的性質即可求出BE的長.【詳解】∵AD平分∠BAC且∠C=90176。,DE⊥AB,∴CD=DE,由AD=AD,所以,Rt△ACD≌Rt△AED,所以,AC=AE.∵E為AB中點,∴AC=AE=AB,所以,∠B=30176。 .∵DE為AB中線且DE⊥AB,∴AD=BD=3cm ,∴DE=BD=,∴BE= cm.故選A.【點睛】本題考查了角平分線的性質,線段垂直平分線的性質,全等三角形的判定與性質,含30176。角的直角三角形的性質,及勾股定理等知識,熟練掌握全等三角形的判定與性質是解答本題的關鍵.12.B解析:B【分析】竹子折斷后剛好構成一直角三角形,設竹子折斷處離地面尺,則斜邊為尺,利用勾股定理解題即可.【詳解】解:設竹子折斷處離地面尺,則斜邊為尺,根據勾股定理得:.解得:,故選:.【點睛】此題考查了勾股定理的應用,解題的關鍵是利用題目信息構造直角三角形,從而運用勾股定理解題.13.C解析:C【解析】試題解析:作點關于直線的對稱點,連接并延長,與直線的交點即為使得取最大值時
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1