freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

八年級數(shù)學試卷易錯易錯壓軸勾股定理選擇題試題(含答案)(編輯修改稿)

2025-04-01 22:15 本頁面
 

【文章內(nèi)容簡介】 解析:D【解析】【分析】連接BD,作CF⊥AB于F,由線段垂直平分線的性質(zhì)得出BD=AD,AE=BE,得出∠DBE=∠DAB=30176。,由直角三角形的性質(zhì)得出BD=AD=2DE=,AE=BE=DE=3,證出△BCD是直角三角形,∠CBD=90176。,得出∠BCF=30176。,得出BF=BC=,CF=BF=,求出EF=BE+BF=,在Rt△CEF中,由勾股定理即可得出結(jié)果.【詳解】解:連接BD,作CF⊥AB于F,如圖所示:則∠BFC=90176。,∵點E為AB的中點,DE⊥AB,∴BD=AD,AE=BE,∵∠DAB=30176。,∴∠DBE=∠DAB=30176。,BD=AD=2DE=,AE=BE=DE=3,∵BC2+BD2=12+(2)2=13=CD2,∴△BCD是直角三角形,∠CBD=90176。,∴∠CBF=180176。30176。90176。=60176。,∴∠BCF=30176。,∠BFC=90176。,∴∠BCF=30176。,∴BF=BC=,CF=BF=,∴EF=BE+BF=, 在Rt△CEF中,由勾股定理得:CE=; 故選D.【點睛】本題考查了勾股定理、勾股定理的逆定理、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì);熟練掌握勾股定理和逆定理是解題的關鍵.7.B解析:B【解析】【分析】先求出SA、SB、SC的值,再根據(jù)勾股定理的幾何意義求出D的面積,從而求出正方形D的邊長.【詳解】解∵SA=66=36cm2,SB=55=25cm2,Sc=55=25cm2,又∵ ,∴36+25+25+SD=100,∴SD =14,∴正方形D的邊長為cm.故選:B.【點睛】本題考查了勾股定理,熟悉勾股定理的幾何意義是解題的關鍵.8.D解析:D【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點,的最短距離為線段的長.∵已知圓柱的底面直徑,∴,在中, ,∴,∴從點爬到點,然后再沿另一面爬回點,則小蟲爬行的最短路程的平方為.故選D.【點睛】本題考查了平面展開最短路徑問題,解題的關鍵是會將圓柱的側(cè)面展開,并利用勾股定理解答.9.D解析:D【解析】【分析】利用勾股定理和正方形的面積公式,對公式進行合適的變形即可判斷各個選項是否爭取.【詳解】A中,根據(jù)勾股定理等于大正方形邊長的平方,它就是正方形的面積,故正確;B中,根據(jù)小正方形的邊長是2它等于三角形較長的直角邊減較短的直角邊即可得到,正確;C中,根據(jù)四個直角三角形的面積和加上小正方形的面積即可得到,正確;D中,根據(jù)A可得,C可得,結(jié)合完全平方公式可以求得,錯誤.故選D.【點睛】、B、C選項的等式中需理解等式的各個部分表示的幾何意義,對于D選項是由A、C選項聯(lián)立得出的.10.D解析:D【分析】作點A關于OM的對稱點E,AE交OM于點D,連接BE、OE,BE交OM于點C,此時△ABC周長最小,根據(jù)題意及作圖可得出△OAD是等腰直角三角形,OA=OE=3,所以∠OAE=∠OEA=45176。,從而證明△BOE是直角三角形,然后設AB=x,則OB=3+x,根據(jù)周長最小值可表示出BE=6-x,最后在Rt△OBE中,利用勾股定理建立方程求解即可.【詳解】解:作點A關于OM的對稱點E,AE交OM于點D,連接BE、OE,BE交OM于點C, 此時△ABC周長最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE,∵△ABC周長的最小值是6,∴AB+BE=6,∵∠MON=45176。,AD⊥OM,∴△OAD是等腰直角三角形,∠OAD=45176。,由作圖可知OM垂直平分AE,∴OA=OE=3,∴∠OAE=∠OEA=45176。,∴∠AOE=90176。,∴△BOE是直角三角形,設AB=x,則OB=3+x,BE=6-x,在Rt△OBE中,解得:x=1,∴AB=1.故選D.【點睛】本題考查了利用軸對稱求最值,等腰直角三角形的判定與性質(zhì),勾股定理,熟練掌握作圖技巧,正確利用勾股定理建立出方程是解題的關鍵.11.C解析:C【分析】作DE⊥AB于E,由勾股定理計算出可求BC=8,再利用角平分線的性質(zhì)得到DE=DC,設DE=DC=x,利用等等面積法列方程、解方程即可解答.【詳解】解:作DE⊥AB于E,如圖,在Rt△ABC中,BC==8,∵AD是△ABC的一條角平分線,DC⊥AC,DE⊥AB,∴DE=DC,設DE=DC=x,S△ABD=DE?AB=AC?BD,即10x=6(8﹣x),解得x=3,即點D到AB邊的距離為3.故答案為C.【點睛】本題考查了角平分線的性質(zhì)和勾股定理的相關知識,理解角的平分線上的點到角的兩邊的距離相等是解答本題的關鍵..12.D解析:D【分析】先根據(jù)B(3m,4m+1),可知B在直線y=x+1上,所以當BD⊥直線y=x+1時,BD最小,找一等量關系列關于m的方程,作輔助線:過B作BH⊥x軸于H,則BH=4m+1,利用三角形相似得BH2=EH?FH,列等式求m的值,得BD的長即可.【詳解】解:如圖,∵點B(3m,4m+1),∴令,∴y=x+1,∴B在直線y=x+1上,∴當BD⊥直線y=x+1時,BD最小,過B作BH⊥x軸于H,則BH=4m+1,∵BE在直線y=x+1上,且點E在x軸上,∴E(?,0),G(0,1)∵F是AC的中點∵A(0,?2),點C(6,2
點擊復制文檔內(nèi)容
高考資料相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1