freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

初中數(shù)學試卷分類匯編易錯易錯壓軸勾股定理選擇題(及答案)(12)(編輯修改稿)

2025-04-01 23:12 本頁面
 

【文章內容簡介】 ∴∠AFD=∠CFE.∴△AFD≌△CFE(ASA).同理可證:△CFD≌△BFE.結論②正確,理由如下: ∵△AFD≌△CFE,∴S△AFD=S△CFE, ∴S四邊形CDFE=S△CFD+S△CFE=S△CFD+S△AFD=S△AFC=S△ABC,即△ABC的面積等于四邊形CDFE的面積的2倍.結論③錯誤,理由如下: ∵△AFD≌△CFE,∴CE=AD,∴CD+CE=CD+AD=AC=FA.結論④正確,理由如下: ∵△AFD≌△CFE,∴AD=CE;∵△CFD≌△BFE,∴BE=CD.在Rt△CDE中,由勾股定理得:,∴ .故選B.【點睛】本題是幾何綜合題,考查了等腰直角三角形、全等三角形和勾股定理等重要幾何知識點,綜合性比較強.解決這個問題的關鍵在于利用全等三角形的性質.7.B解析:B【分析】過點C作于點H,根據(jù)等腰三角形的性質得到,根據(jù)得到,可以證得①是正確的,利用勾股定理求出AG的長,算出三角形ACD的面積證明②是正確的,再根據(jù)角度之間的關系證明,得到④是正確的,最后利用勾股定理求出CF的長,得到③是正確的.【詳解】解:如圖,過點C作于點H,∵,∴,∵,∴,∴,∴,故①正確;∵,∴,∴,在中,∴,故②正確;∵,∴,∵,∴,∵,,∴,∴,故④正確;∴,在中,故③正確.故選:B.【點睛】本題考查幾何的綜合證明,解題的關鍵是掌握等腰三角形的性質和判定,勾股定理和三角形的外角和定理.8.B解析:B【分析】在BC邊上取一點P(點P不與點B、C重合),使得成為等腰三角形,分三種情況分析:;根據(jù)等腰三角形的性質分別對三種情況逐個分析,即可得到答案.【詳解】根據(jù)題意,使得成為等腰三角形,分、三種情況分析:當時,點P位置再分兩種情況分析:第1種:點P在點O右側,于點O∴ 設∴∵∴ ∴ ∴∴,不符合題意;第2種:點P在點O左側,于點O設∴∴ ∴∴,點P存在,即;當時,點P存在;當時,即點P和點C重合,不符合題意;∴符合題意的點P共有:2個故選:B.【點睛】本題考查了等腰三角形、勾股定理、一元一次方程的知識;解題的關鍵是熟練掌握等腰三角形、勾股定理、一元一次方程的性質,從而完成求解.9.C解析:C【分析】根據(jù)勾股定理和分類討論的方法可以求得第三邊的長,從而可以解答本題.【詳解】由題意可得,當3和4為兩直線邊時,第三邊為:=5,當斜邊為4時,則第三邊為:=,故選:C【點睛】本題考查勾股定理,解答本題的關鍵是明確題意,利用勾股定理和分類討論的數(shù)學思想解答.10.C解析:C【分析】先過點E作EG⊥CD于G,再判定△BCD、△ABD都是等腰直角三角形,并求得其邊長,最后利用等腰直角三角形,求得EG的長,進而得到△EDC的面積.【詳解】解:過點E作EG⊥CD于G,又∵CF平分∠BCD,BD⊥BC,∴BE=GE,在Rt△BCE和Rt△GCE中,∴Rt△BCE≌Rt△GCE,∴BC=GC,∵BD⊥BC,BD=BC,∴△BCD是等腰直角三角形,∴∠BDC=45176。,∵AB//CD,∴∠ABD=45176。,又∵∠A=90176。,AB=1,∴等腰直角三角形ABD中,BD===BC,∴Rt△BDC中,CD==2,∴DG=DC﹣GC=2﹣,∵△DEG是等腰直角三角形,∴EG=DG=2﹣,∴△EDC的面積=DCEG=2(2﹣)=2﹣.故選:C.【點睛】本題主要考查了角平分線的性質,等腰直角三角形的性質與判定,全等三角形的判定與性質,以及勾股定理等知識,解決問題的關鍵是作輔助線,構造直角三角形EDG進行求解.11.B解析:B【分析】根據(jù)勾股定理的逆定理對四個選項進行逐一分析即可.【詳解】A、C、D、故錯誤;B、能構成直角三角形,本選項正確.故選B.【點睛】本題考查了勾股定理的知識點,解題的關鍵是熟練的掌握勾股定理的定理與運算.12.D解析:D【分析】欲判斷三角形是否為直角三角形,這里給出三邊的長,需要驗證兩小邊的平方和等于最長邊的平方即可.【詳解】①c不一定是斜邊,故錯誤;②正確;③若△ABC是直角三角形,c不是斜邊,則a2+b2≠c2,故錯誤,所以正確的只有②,故選D.【點睛】本題考查了勾股定理以及勾股定理的逆定理,熟練掌握勾股定理以及勾股定理的逆定理的內容是解題的關鍵.13.B解析:B【分析】由數(shù)軸上點表示的數(shù)為,點表示的數(shù)為1,得PA=2,根據(jù)勾股定理得,進而即可得到答案.【詳解】∵數(shù)軸上點表示的數(shù)為,點表示的數(shù)為1,∴PA=2,又∵l⊥PA, ∴,∵PB=PC=,∴數(shù)軸上點所表示的數(shù)為:.故選B.【點睛】本題主要考查數(shù)軸上點表示的數(shù)與勾股定理,掌握數(shù)軸上兩點之間的距離求法,是解題的關鍵.14.B解析:B【分析】作AD⊥BC,則D為BC的中點,即BD=DC=2,根據(jù)勾股定理可以求得AD,則根據(jù)S=BCAD可以求得△AB
點擊復制文檔內容
合同協(xié)議相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1